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Abstract

Background: Additivity has long been recognised as a desirable property of systems of equations to predict the biomass 
of components and the whole tree. However, most tree biomass studies report biomass equations fitted using traditional 
ordinary least-squares regression. Therefore, we aimed to develop models to estimate components, subtotals and above-
ground total biomass for a Pinus radiata D.Don biomass dataset using traditional linear and nonlinear ordinary least-
squares regressions, and to contrast these equations with the additive procedures of biomass estimation.

Methods: A total of 24 ten-year-old trees were felled to assess above-ground biomass. Two broad procedures were 
implemented for biomass modelling: (a) independent; and (b) additive. For the independent procedure, traditional linear 
models (LINOLS) with scaled power transformations and y-intercepts and nonlinear power models (NLINOLS) without 
y-intercepts were compared. The best linear (transformed) models from the independent procedure were further tested 
in three different additive structures (LINADD1, LINADD2, and LINADD3). All models were evaluated using goodness-of-fit 
statistics, standard errors of estimates, and residual plots.

Results: The LINOLS with scaled power transformations and y-intercepts performed better for all components, subtotals 
and total above-ground biomass in contrast to NLINOLS that lacked y-intercepts. The additive model (LINADD3) in a joint 
generalised linear least-squares regression, also called seemingly unrelated regression (SUR), provided the best goodness-
of-fit statistics and residual plots for four out of six components (stem, branch, new foliage and old foliage), two out of three 
subtotals (foliage and crown), and above-ground total biomass compared to other methods. However, bark, cone and bole 
biomass were better predicted by the LINOLS method.

Conclusions: SUR was the best method to predict biomass for the 24-tree dataset because it provided the best goodness-
of-fit statistics with unbiased estimates for 7 out of 10 biomass components. This study may assist silviculturists and 
forest managers to overcome one of the main problems when using biomass equations fitted independently for each tree 
component, which is that the sum of the biomasses of the predicted tree components does not necessarily add to the total 
biomass, as the additive biomass models do. 

New Zealand Journal of Forestry Science

KC et al. New Zealand Journal of Forestry Science (2020) 50:7 
https://doi.org/10.33494/nzjfs502020x90x
E-ISSN: 1179-5395
published on-line: 25/10/2020

© The Author(s). 2020 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License  
(http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give  
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

 Research Article            Open Access

Pinus radiata D.Don, native to California, is a widely 
planted commercial tree species in the Southern 
Hemisphere, including New Zealand, Australia, Chile, 
Spain and South Africa (Lavery & Mead 2000; Mead 

Introduction
Forests play a vital role in the carbon cycle to mitigate 
climate change by accumulating and sequestering 
atmospheric carbon dioxide (CO2) (Houghton 1991). 
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2013). It is grown primarily for timber production, as 
this species is versatile, fast-growing, and has a wide 
range of end uses (Lavery & Mead 2000; Lewis et al. 
1993; Rogers 2002; Sutton 1999; Toro & Gessel 1999). 
The global plantation area of P. radiata is now more than 
4.2 million hectares (Mead 2013). In New Zealand, it is 
the predominant planted species, and accounts for about 
90% of the total 1.7 million hectares of forest plantations 
(Nixon et al. 2017). Plantation forests in New Zealand 
have not only been recognised as providing financial 
returns from traditional wood products, but also as 
providing environmental services by accumulating 
biomass and sequestering a substantial amount of 
carbon. To quantify such benefits, a precise biomass 
model with a required level of accuracy is essential. 

Tree biomass estimation is required by scientists 
and practitioners alike as a surrogate of ecosystem 
production, product outturn and carbon accounting, 
among others. Biomass modelling is important for 
estimating carbon sequestration of forest ecosystems, as 
individual tree biomass or its components is aggregated 
to yield the stand biomass (Zheng et al. 2015). Allometric 
models are commonly used to assess the biomass 
accumulated in forests. Allometric relationships can be 
developed from destructive sampling by using several 
forms of regression equations. Generally, biomass 
equations are fitted in linear form using logarithmic 
transformation of B and D of the form, B = aDb, where 
B is the biomass of the tree, or its components, and D is 
the diameter of the tree (Baskerville 1972; Beauchamp 
& Olson 1973; Canadell et al. 1988; Santa Regina et al. 
1997; Sprugel 1983). Clutter et al. (1983) explained 
various linear and nonlinear additive regression models 
to estimate the biomass of an individual tree or its 
components. The additivity of biomass equations has 
long been recognised as a desirable property, so that 
predictions of tree components added together equals 
predictions of total tree biomass (Cunia & Briggs 1984, 
1985; Parresol 1999, 2001). Three procedures for 
forcing additivity have been proposed (Cunia & Briggs 
1985; Parresol 1999): (a) adding the best regression 
functions of the components’ biomass to determine 
the total biomass regression function; (b) using the 
same independent variables for each component; and  
(c) using joint generalised least-squares regression, 
also known as seemingly unrelated regression (SUR), in 
which statistical dependencies among sample data are 
accounted for by forcing constraints on the regression 
coefficients. These three procedures have been 
extensively applied for estimating tree biomass around 
the world (Canga et al. 2013; Návar, González et al. 
2004). The additive procedure in SUR has been mostly 
used for biomass modelling of single species (Cunia & 
Briggs 1984, 1985; Green & Reed 1985; Parresol 1999; 
Zheng et al. 2015).

Over the last 50 years, a substantial number of 
biomass studies for P. radiata have been undertaken in 
New Zealand (Beets & Madgwick 1988; Beets et al. 2007; 
Beets & Pollock 1987; Cromer et al. 1985; Madgwick 
1983, 1985, 1994; Madgwick et al. 1977; Mead et al. 
1984; Moore 2010; Webber & Madgwick 1983; Will 

1964). Previous studies for P. radiata in New Zealand 
aimed to find the best biomass equations using various 
functional linear and nonlinear forms, with models 
generally fitted separately for each individual biomass 
component and for the whole tree. Separately calculated 
biomass equations ignore inherent correlation among 
the component equations measured on the same tree 
(Kozak 1970; Parresol 1999). Simultaneous fits with 
related equations using additive procedures have greater 
statistical efficiency, as they take into account statistical 
dependencies among biomass components in parameter 
estimation recorded from the same tree (Bi et al. 2010; 
Bi et al. 2004; Carvalho & Parresol 2003; Parresol 1999, 
2001). Two country specific systems of additive biomass 
equations were developed for P. radiata using routinely 
measured stand variables from Australia and New 
Zealand (Bi et al. 2010). It has been noted that prediction 
accuracy varies across methodological differences and 
uncertainties associated over a range of stand variables 
(Bi et al. 2010; Moore 2010). As there is uncertainty 
about how to better meet additivity requirements, this 
study was undertaken to compare traditional linear 
and nonlinear ordinary least-squares regressions, and 
additive procedures in the estimation of tree component 
and total biomass for a dataset composed of 24 trees of 
P. radiata. 

Methods

Study site and experiment
This study was carried out in the Canterbury region of New 
Zealand, planted with P. radiata in 2005, in a forestry trial 
designed to test the effect of stocking, genetics, fertiliser 
application, and follow-up weed control treatment on 
productivity and wood quality (Mason 2008). The site 
is located at latitude 43° 37.2′ S and longitude 172°  
20.4′ E, and about 45 m above sea level on a flat landscape. 
The site has a mean annual air temperature between 
11 and 13 °C with a monthly minimum (July) of −2 to  
+4 °C and a monthly maximum (January) of 20 to 23 °C 
(Macara 2016). Annual rainfall is about 618 mm with a 
monthly range between 38 and 68 mm (Macara 2016). 
The experiment consisted of 48 permanent plots with 
a randomised complete block split-split design, with 
the arrangement of factors within four complete blocks 
(Mason 2008). During the summer of 2015 to 2016, 
24 ten-year-old trees of P. radiata were harvested and 
measured from six plots of the trial, and within each plot 
four trees were felled. These plots consisted of three 
levels of stocking (625, 1250 and 2500 stems ha−1), two 
levels of follow-up weed control treatment (herbicide 
and no chemical treatment) and two clones (1 and 2).

Biomass data
Trees were felled at ground level. The over-bark diameter 
of each tree at breast height was recorded at 1.4 m. Total 
tree height was measured from ground level to the tip 
of the tree bole. For each tree, the components were 
separated into stem, branch, bark, foliage, and cones. 
Needles and twigs less than 1 cm in diameter were 



considered foliage, and this was separated into “new” 
and “old” foliage. The total fresh mass of all components 
including subsamples were measured immediately 
after felling, using a portable balance. All the cones 
and small branches were weighed separately. The logs 
were separated into small pieces and weighed fresh in 
the field. A subsample of stem discs with bark (cut at 
the 1.4 m section and every 2 m upwards in the stem) 
and subsamples of all other components, were weighed 
to determine fresh weight in the field. Subsamples 
were dried in an oven at 70 °C until constant mass was 
achieved, and then this weight was recorded. Dry mass 
of each component was calculated as the fresh mass 
recorded in the field for that component multiplied by 
the ratio of subsample dry to fresh mass (Eq. 1):

                     (1)

where Y is the total dry mass (kg), DW and FW refers to 
the sub sampled dry and fresh mass (kg) respectively, 
TFW is the total fresh mass (kg), and i is the tree 
component such as stem, bark, branch, new foliage, old 
foliage and cones. 

Descriptive statistics of the trees including 
components, sub-total and above-ground total biomass 
are shown in Table 1. The notations and definitions used 
in this manuscript are explained in the Abbreviations 
section.

Variance stabilisation
Biomass data generally exhibit non-constant variance in 
model residuals (Parresol 1993, 2001). When developing 
predictive equations, variance can be stabilised either by 
providing a weight function or by using transformations 
(Parresol 1993, 2001). Curvilinearity and heterogeneity 

in variance of all linear models were reduced by 
transforming the response as well as explanatory 
variables using scaled-power transformations (Eq. 2), 
widely known as Box-Cox transformations (Box & Cox 
1964). The predicted values of these models were back 
transformed to the original form using Eq. 3. A similar 
variance stabilisation technique was implemented by 
Zheng (2015) while using the additive procedure of 
biomass modelling for Quercus variabilis in northern 
China.  

                     (2)

                        (3)

where Y(λ) is the transformed variable, and λ is a 
coefficient of the transformed variable that varies 
normally between −3 and +5 (Cook & Weisberg 2009),  
Y' is the back-transformed variable. A λ term is chosen 
to make the frequency distribution of each variable 
as close to normal as possible, thus promoting linear 
relationships and stabilising variance.

Model assessment and evaluation
In this study, a dataset consisting of 24 trees was used to 
evaluate the fitting bias, precision, and validity of models 
using the following goodness-of-fit statistics: root mean 
square error (RMSE), mean absolute bias (MAB), mean 
prediction error (MPE), residual standard error (RSE), 
coefficient of variation (CV), coefficient of determination 
(R2), index of agreement (IOA), and Akaike information 
criterion (AIC). Models were considered better with 
small AIC, RMSE, MAB, MPE, RSE, and CV of the residuals, 
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1Description Max Min Mean 2SD 3CI (P= 95%)
Tree
variables

DBH (cm)   28   8.2   18.68   5.46   2.30
H (m)   13.77   8.85   11.66   1.19   0.50
CrL (m)     6   0.2     3.35   2.07   0.87

Components Stem (kg tree-1) 118.46   9.29   60.46 32.24 13.62
Branch (kg tree-1)   62.68   0.28   17.42 20.92   8.83
OF (kg tree-1)   34.84   0.94   13.18 11.63   4.91
Bark (kg tree-1)   11.92   0.65     5.18   3.19   1.35
Cone (kg tree-1)   16.96   0.05     3.65   3.87   1.63
NF (kg tree-1)     9.79   0.29     3.37   2.86   1.21

Subtotals Bole (kg tree-1) 128.69   9.94   65.64 35.33 14.92
Crown (kg tree-1) 123.63   3.12   37.60 37.29 15.75
Foliage (kg tree-1)   61.59   2.84   20.19 17.45   7.37

Total AGT (kg tree-1) 241.65 13.07 103.24 71.45 30.17
1 Abbreviation details provided at the end of the text; 2SD = standard deviation, 3CI = confidence interval

TABLE 1: Descriptive statistics for the 24-felled trees used for developing regression models, and components, 
sub-total and above-ground total biomass.



and large R2 and IOA. The interpretation of these fitting 
statistics can be found in Von Gadow and Hui (2001) and 
Goicoa et al. (2011). In addition, model performance was 
assessed by residual plots and histograms of residuals. 

Modelling procedure
In this research, two procedures were implemented to 
estimate components, subtotals and above-ground total 
biomass: (1) independent; and (2) additive. All models 
were fitted to estimate biomass in terms of kg tree−1. 

Independent procedure for biomass estimation
In this procedure, biomass equations were fitted 
independently using traditional linear ordinary least-
squares regressions with scaled power transformations 
and y-intercepts (denoted as, LINOLS; Eq. 4) and 
nonlinear ordinary least-squares power equations that 
lacked y-intercepts (denoted as, NLINOLS; Eq. 5). The 
mathematical specifications of these models are as 
follows (Parresol 1999; Zeng 2011; Zianis et al. 2005).   

                     (4) 

                      (5)

where fl(Xl, βl) is the regression function for the above 
ground biomass or one of its components, Xl are tree 
dimension variables such as D, H and CrL (l = 1, 2, . . . . , p) 
while βl denote the regression coefficients. 

Each component equation contained its own 
independent variables. All components, subtotals and 
AGT biomass equations were fitted separately using the 
lm and nls function of R statistical software (R Core Team, 
2018), for linear and nonlinear regressions, respectively.  

Additive procedure of biomass estimation
In this procedure, biomass equations were fitted based 
on three additive procedures, described and compared 
by Parresol (1999, 2001). The additivity requirement to 
estimate total tree biomass is ensured by (a) adding the 
separately calculated best regression functions of each 
component, (b) using the same independent variables 
for each component, and (c) using joint generalised least-
squares methods, also known as seemingly unrelated 
regression (SUR). In SUR, statistical dependencies among 
components are forced by constraining regression 
coefficients (Cunia & Briggs 1985; Parresol 1999). In 
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this study, four restrictions were provided for the SUR 
model: (1) foliage; (2) crown; (3) bole; and (4) AGT, as 
illustrated in Figure 1. For example, foliage biomass is the 
sum of NF, OF and cone biomass (Eq. 6). Mathematically, 
the additive system of biomass equations in additive 
error terms with cross-equation correlation is specified 
in Eq. 6 where Ŷi represents the predicted biomass of a 
given component and fi(Xi, βi) is a regression function 
for the biomass component, (i = cone, new foliage, old 
foliage, branch, bark and stem, foliage, crown, bole and 
AGT biomass). The residual is εij for the ith equation 
and j is an index for component. All additive biomass 
equations were fitted in the R statistical software (R Core 
Team 2018) using the systemfit package (Henningsen & 
Hamann 2007). 

In the first additive procedure, the additivity 
was ensured by adding individually calculated best 
regression functions of each component to give a total 
biomass regression function (Cunia & Briggs 1985; 
Parresol 1999). The best regression functions obtained 
from the independent procedure of biomass modelling 
that were fitted separately for each component given 
in Table A.1 were used. The additive structure of this 
model, denoted as LINADD1, is specified in Eq. 7. In the 
second additive procedure, additivity was implemented 
by using the same explanatory variables for each 
component. For this, the most frequent independent 
variable (D) was selected from the best linear regression 
function as it was best fitted for stem, bark, foliage, bole, 
and AGT (Table A.1). Using D as an independent variable 

FIGURE 1: A statistical framework showing model 
structure with four restrictions (foliage, 
crown, bole and AGT) for biomass additivity. 

(6)
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(7)

(8)



for all components, the additive structure of the model, 
denoted as LINADD2, is specified in Eq. 8.
In the third additive procedure, we used different 
explanatory variables in a joint generalised linear least-
squares regression, known as SUR (Cunia & Briggs 
1985; Parresol 1999). For this, best-fitted explanatory 
variables from the independent procedure of biomass 
modelling were used for stem, cone, branch, NF, and OF 
(Table A.1). We used the second-best regression D2H as 
an independent variable for bark (data not shown). The 
additive structure of the model, denoted as LINADD3, is 
specified in Eq. 9.

Results

Comparison of fitted equations for components, 
subtotals and AGT
Tested LINOLS and NLINOLS equations with their best-
fit results are given in Table A.1, and fitted statistics with 
their regression estimates are presented in Table A.2. 
We attempted to take into account follow-up herbicide, 
stocking, and clone factors into all models as dummy 
variables. These were found to be non-significant 
(P>0.05) so were discarded from all subsequent 
modelling. In comparison, LINOLS provided relatively 
higher R2 values than NLINOLS for all, except for 
branch and cone biomass (Table A.2). However, plotting 
residuals with predicted values and with other variables 

demonstrated that NLINOLS regression was unsuitable 
for these two components (data not shown). Therefore, 
overall, the best fitted LINOLS model according to 
goodness-of-fit statistics and residual plots were Eq. (i) 
for stem, bark, foliage, bole and AGT biomass, Eq. (ii) for 
cone biomass, Eq. (iii) for branch biomass, Eq. (viii) for 
NF and crown biomass, and Eq. (ix) for OF biomass (Table 
A.1). Finally, these selected LINOLS models were further 
tested in the additive process of biomass estimations. 
The estimated coefficients for six components, three 
subtotals, and AGT using four methods (LINOLS, 
LINADD1, LINADD2 and LINADD3) are presented in 
Table 2 and their goodness of fit statistics are given in 
Table 3. The distribution of residuals with predicted 
values of the fitted best models for six components, three 
subtotals, and AGT are given in Fig. 2.

The LINADD3 fitted in SUR was considered best to 
predict stem (Eq. 10), branch (Eq. 11), NF (Eq. 13), OF 
(Eq. 14) biomass as it provided the better-fitting statistics 
when compared to the other three equations (Table 3). 
For stem, LINADD3 simultaneously decreased the RMSE, 
RSE, and CV by 0.1%, MPE by 0.2% while R2 increased 
by 0.005%, compared to the other three equations. For 
branches, LINADD3 provided a marginal decrease in the 
goodness-of-fit statistics (e.g. RMSE, RSE, and CV by 1%) 
in contrast to LINOLS and LINADD1. For NF, LINADD3 
model recorded a decrease in fitting statistics (e.g. RMSE 
by 3.7%, RSE by 1.43%), in contrast to the other three 
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Components Parameter 
estimates

Methods λ value

LINOLS LINADD1 LINADD2 LINADD3

Cone β10 −2.301 **
(0.769)

−2.225 **
(0.767)

−5.240 **
(1.483)

−2.229 **
(0.767)

λd = 0.34
λco = 0.27

β11 0.132 ***
(0.029)

0.129 ***
(0.029)

1.262 ***
(0.296)

0.129 ***
(0.029)

NF β20 −4.959 ***
(0.375)

−4.959 ***
(0.375)

−4.959 ***
(0.375)

−4.213 ***
(0.663)

λd = 0.34
λcrl = 1.45
λnf = 0.07β21 1.184 ***

(0.075)
1.184 ***
(0.075)

1.184 ns
(0.075)

1.059 ***
(0.117)

β22 −0.035 ns
(0.026)

OF β30 −4.089 ***
(0.331)

−3.209 ***
(0.336)

−4.089 ***
(0.331)

−3.105 ***
(0.350)

λd = 0.34
λcrl = 1.45
λof = 0.01β31 1.266 ***

(0.066)
1.119 ***
(0.063)

1.266 ***
(0.066)

1.101 ***
(0.066)

β32 −0.006 ***
(0.001)

−0.007 ***
(0.002)

Branch β40 −5.803 ***
(0.666)

−5.786 ***
(0.619)

−6.486 ***
(0.681)

−5.758 ***
(0.619)

λd = 0.34
λcrl = 1.67
λbr = 0.04β41 1.981 ***

(0.149)
1.987 ***
(0.128)

(1.760) ***
(0.136)

1.973 ***
(0.128)

β42 −0.049 *
(0.019)

−0.051 ***
(0.009)

−0.049 ***
(0.009)

Bark β50 −4.983 ***
(0.373)

−4.983 ***
(0.373)

−4.983 ***
(0.373)

−3.340 ***
(0.279)

λd2h = 0.3
λba = 0.36

β51 1.416 ***
(0.074)

1.416 ***
(0.074)

0.373 ***
(0.074)

0.146 ***
(0.007)

Stem β60 −6.691 ***
(0.493)

−6.691 ***
(0.493)

−6.691 ***
(0.493)

−6.655 ***
(0.492)

λd = 0.34
λst = 0.38

β61 3.264 ***
(0.099)

3.264 ***
(0.099)

3.264 ***
(0.099)

3.257 ***
(0.098)

Foliage β70 −3.259 ***
(0.393)

λd = 0.34
λfol = 0.03

β71 1.213 ***
(0.079)

Crown β80 −0.731 ns
(0.510)

λd = 0.34
λcrl = 1.45
λcr = −0.13β81 0.693 ***

(0.089)

β82 −0.046 *
(0.021)

Bole β90 −7.002 ***
(0.510)

λd = 0.34
λbol = 0.38

β91 3.403 ***
(0.102)

AGT β100 −1.182 ***
(0.244)

λd = 0.34
λAGT = 0.08

β101 1.309 ***
(0.049)

TABLE 2: Regression model for each biomass component across modelling techniques. Table shows parameter esti-
mates, their standard error between parentheses and significance indicated as: ns, non-significant, *, P<0.05; **, P<0.01; 
***, P<0.001. Box-Cox transformation values (λ) are also presented.

Note: The λ value shown in the table indicates that the variables were subjected to a scaled power transformation. The estimated parameter 
values for each technique are presented in power-transformed scale. 



TABLE 2: Confusion matrix
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Biomass

M
od

el

RM
SE

M
AB

M
PE

RS
E

CV R2 IO
A

RA
N

K

Stem LINOLS    4.864    3.391 23.660 5.080 8.046 0.976 0.994 3
LINADD1    4.864    3.391 23.660 5.080 8.046 0.976 0.994 4
LINADD2    4.864    3.391 23.659 5.080 8.046 0.976 0.994 2
LINADD3    4.859    3.406 23.611 5.075 8.038 0.976 0.994 1

Branch LINOLS    8.034    4.935 64.538 8.588 46.124 0.846 0.962 2
LINADD1    8.046    4.97 64.733 8.601 46.194 0.846 0.962 3
LINADD2 11.168    6.658 124.713 11.664 64.118 0.703 0.909 4
LINADD3    7.958    4.848 63.322 8.507 45.688 0.849 0.962 1

Bark LINOLS    0.880    0.604 0.774 0.919 16.987 0.921 0.979 1
LINADD1    0.879    0.604 0.774 0.919 16.987 0.921 0.979 3
LINADD2    0.879    0.604 0.774 0.919 16.987 0.921 0.979 1
LINADD3    0.899    0.613 0.809 0.939 17.374 0.917 0.979 4

NF LINOLS    0.896    0.609 0.803 0.936 26.627 0.898 0.973 2
LINADD1    0.896    0.609 0.803 0.936 26.627 0.898 0.973 4
LINADD2    0.896    0.609 0.803 0.936 26.627 0.898 0.973 3
LINADD3    0.863    0.599 0.745 0.923 25.642 0.905 0.975 1

OF LINOLS    2.879    2.109 8.289 3.007 21.852 0.936 0.985 3
LINADD1    2.486    1.758 6.181 2.658 18.869 0.952 0.989 2
LINADD2    2.879    2.109 8.289 3.007 21.852 0.936 0.985 3
LINADD3    2.436    1.727 5.935 2.604 18.490 0.954 0.989 1

Cone LINOLS    2.743    1.777 7.522 2.865 75.229 0.475 0.781 1
LINADD1    2.760    1.783 7.619 2.883 75.710 0.468 0.774 3
LINADD2    2.811    1.785 7.904 2.936 77.113 0.449 0.753 4
LINADD3    2.759    1.783 7.613 2.882 75.681 0.469 0.775 2

Foliage LINOLS    4.561    3.179 20.800 4.764 22.592 0.929 0.981 2
LINADD1    4.509    3.194 20.327 4.939 22.334 0.930 0.982 2
LINADD2    4.648    3.307 21.606 4.855 23.026 0.926 0.981 4
LINADD3    4.478    3.173 20.048 4.905 22.180 0.931 0.982 1

Crown LINOLS 15.359    9.019 235.915 16.043 40.845 0.823 0.955 4
LINADD1 10.146    6.633 102.932 11.403 26.979 0.923 0.981 2
LINADD2 14.044    8.408 197.219 14.668 37.346 0.852 0.959 3
LINADD3 10.023    6.570 100.466 11.265 26.655 0.925 0.981 1

Bole LINOLS    5.287    3.765 27.951 5.522 8.055 0.977 0.994 1
LINADD1    5.295    3.762 28.035 5.530 8.067 0.987 0.994 4
LINADD2 5.295    3.762 28.035 5.530 8.067 0.987 0.994 2
LINADD3    5.293    3.799 28.014 5.658 8.064 0.987 0.994 3

AGT LINOLS 17.131 11.419 293.497 17.894 16.594 0.940 0.985 3
LINADD1 14.704    9.702 216.201 16.526 14.242 0.956 0.989 2
LINADD2 17.405 11.171 302.933 18.179 16.859 0.938 0.984 4
LINADD3 14.667    9.708 215.132 16.485 14.207 0.956 0.989 1

TABLE 3: Goodness-of-fit statistics for given biomass components using four methods of modelling.

Note: RANK indicates the model’s performance in comparison. For example, a model in RANK 1 is a best and RANK 4 is a worst 
in terms of goodness-of-fit statistics, and residual plots.
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(A) Stem (Eq.10) (B) Branch (Eq.11) 

  
(C) Bark (Eq. 12) (D) NF (Eq. 13) 

  
(E) OF (Eq. 14) (F) Cone (Eq. 15) 
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equations. For OF, the LINADD3 provided a decrease 
in RMSE (by 10.9%), MAB (by 12.7%), MPE (by 20.3%), 
RSE (by 9.6%) and CV (by 10.9%), and an increase in R2 

(by 1.2%) and IOA (by 0.3%), in contrast to the other 
three equations (Table 3). The LINOLS was considered 
the best to predict bark (Eq. 12), cone (Eq. 15) and bole 
(Eq. 12) biomass exhibiting relatively good fit statistics 
as compared to SUR models (Table 3). For bark, LINOLS 
simultaneously decreased RMSE, MAB, MPE, RSE and CV 
by 0.7%, 0.5%, 1.5%, 0.7%, and 0.7%, respectively, and it 
increased R2 by 0.1% in contrast to the other three additive 
SUR equations (Table 3). For cone, the LINOLS equation 
provided a compatible decrease in RMSE, RSE, and CV by 
1.2%; MAB decreased by 0.4%, MPE decreased by 2.4%, 
R2 increased by 3% and IOA increased by 1.9%, in contrast 
to the other three additive equations tested. For bole, the 
LINOLS indicated there was a marginal decrease in RMSE 
(0.1%), MPE (0.2%), RSE (0.1%) and CV (0.1%), compared 
to three additive equations (Table 3).

The additive equation fitted in SUR was considered 
the best to predict foliage (Eq. 16) and crown (Eq. 17) 

biomass as LINADD3 provided better fit statistics (Table 
3). For foliage, LINADD3 provided a decrease in RMSE, 
MAB, MPE and CV by 2.1%, 1.6%, 4.1% and 2.1%, 
respectively, and R2 by 0.3% and IOA by 0.1% compared 
to other three equations (Table 3). For crown, using 
LINADD3, average fitting statistics decreased by 21.5% 
for RMSE, 16.7% for MAB, 36.3% for MPE, 18.1% for 
RSE, and 21.5% for CV; and increased R2 by 7% and 
IOA by 1.7%, in contrast to other three equations. The 
LINADD3 fitted in SUR (Eq. 19) was considered the best 
to predict AGT biomass as it provided a decrease in RMSE 
by 10.1%, MAB by 9.3%, MPE by 18.7, RSE by 5.8% and 
CV by 10.1%; and an increase in R2 by 1.2% and IOA by 
0.3%, in contrast to the other three methods. 

Discussion
In this study, follow-up herbicide, stocking, and 
clone factors fitted into models as dummy variables 
were all non-significant. The possible reason for this 
insignificance could be that the site or silvicultural effects 
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(G) Foliage (Eq. 16) (H) Crown (Eq. 17) 

  
(I) Bole (Eq. 18) (J) AGT (Eq. 19) 
 
FIGURE 2: Residuals vs predicted values of biomass for the selected best models. The solid black 
horizontal line across zero represent baseline and the dotted red line is LOESS curve 
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FIGURE 2: Residuals vs predicted values of biomass for the selected best model for each biomass compponent (A–J). 
The solid black horizontal line across zero represent baseline and the dotted red line is LOESS curve.



were explained by the tree size variables because the 
silvicultural treatments may simply speed up/slow the 
growth of the trees (Beets & Pollock 1987; Moore 2010), 
as opposed to changing their allometry. The biomass of  
P. radiata plantation changes with a wide range of 
climatic, edaphic, silvicultural and genetic factors 
(Beets & Pollock 1987; Bi et al. 2010; Moore 2010). 
Another reason of this lack of significance could be 
the small sample size (Duncanson et al. 2015) as the 
parameterisation of allometric equations depends 
significantly on the size of sample. 

In this study, the best model of each component 
selected from independent procedures provided the 
logical base equations for further tests in the additivity 
of biomass equations. The same approach was also used 
by other researchers (Magalhães & Seifert 2015; Návar 
et al. 2002) to utilise additive properties in biomass 
modelling. Biomass additivity reduces the discrepancy 

between the sum of predicted values for components 
and those for a total tree (Kozak 1970), and it has long 
been documented as a desirable property of systems of 
equations to predict total tree biomass (Bi et al. 2004; 
Parresol 2001). Three procedures were implemented 
for the additivity in the biomass model (Parresol 
1999, 2001): (1) using a separately calculated best 
linear function of the biomass of the components (best 
linear functions were D, D and H, D, D and CrL, D and 
CrL2, and D2 for stem, branch, bark, NF, OF, and cone 
biomass, respectively); (2) using the most frequently 
observed predictor (D) as the same independent 
variable for all components; and (3) using different 
independent variables for each component by forcing 
four linear restrictions on the regression coefficients, 
the SUR technique. The additivity of biomass equations 
to predict biomass of components, subtotal, and AGT 
has been explained in some other studies (Carvalho & 
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(Beets & Madgwick 1988; Beets & Pollock 1987), and 
nutrients and silvicultural practices (Beets & Madgwick 
1988; Madgwick 1985; Mead et al. 1984) may influence 
the biomass allometry.

Conclusions
Two procedures for biomass modelling were compared, 
namely, independent and additive. For the independent 
procedure of biomass modelling, LINOLS models with 
scaled power transformations and y-intercepts and 
NLINOLS power models that lacked y-intercepts were 
compared for six components, three subtotals, and 
AGT biomass. The LINOLS models with scaled power 
transformations and y-intercepts provided superior 
results in contrast to NLINOLS power models without 
y-intercepts. The best-fitted component equations 
from LINOLS models were further tested in an additive 
procedure. A system of additive equations in SUR with 
different independent variables for each component 
(LINADD3) showed better performance than LINOLS, 
LINADD1, and LINADD2. 

Besides, the linear SUR model provided comparatively 
unbiased estimates for stem (Eq. 10), branch (Eq. 11), 
NF (Eq. 13), OF (Eq. 14), foliage (Eq. 16), crown (Eq. 17), 
and AGT (Eq. 19), while LINOLS showed comparatively 
better fitting statistics for bark (Eq. 12), cone (Eq. 15) 
and bole biomass (Eq. 18) for the dataset of this study. 
Since seven out of ten biomass components were well 
fitted with SUR that provided lower variance by taking 
account of the existence of correlations among residuals 
of the component equations, we suggest that SUR could 
be a superior method for fitting biomass equations. 
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Parresol 2003; Magalhães & Seifert 2015; Návar et al. 
2002; Návar, Méndez et al. 2004; Parresol 1999, 2001; 
Zhao et al. 2015).

A linear SUR model (LINADD3) of this study provided 
better results than LINOLS, LINADD1, and LINADD2, 
in terms of goodness-of-fit statistics, standard error 
of estimates and residual plots. LINADD3 fitted in SUR 
was superior to the other two additive models since it 
considered the correlation between each component 
equation, and provided greater statistical efficiencies 
(Carvalho & Parresol 2003). In contrast to our results, 
a study reported that the additive model (denoted 
as CON) that used the same independent variable 
for all components, similar to our LINADD2 model, 
was statistically superior to the linear and nonlinear 
SUR model with the different independent variables 
in parameter restriction (Magalhães & Seifert 2015). 
However, the authors (Magalhães & Seifert 2015) 
indicated that the CON method had the limitation that it 
did not take into account the correlations among plant 
parts.

Applying SUR to the system of additive equations 
with the same explanatory variables for each component 
does not provide precise estimation of biomass 
(Srivastava & Giles 1987). Therefore, the LINADD3, 
a SUR model that consisted of different explanatory 
variables for each component is consistent with that of 
Srivastava and Giles (1987), which was more effective 
than the other two additive models. Model LINADD1 
also consisted of the same explanatory variables for 
two-component equations such as stem and bark, and 
LINADD2 consisted of the same independent variable 
for all component equations. Therefore, LINADD1 and 
LINADD2 were not effective compared to LINADD3. In 
addition, the individually calculated best equations for 
each component (LINOLS) provided the least efficient 
biomass estimates for all components except for bark, 
cone and bole biomass, compared with the linear SUR 
model (LINADD3). Researchers recommended using 
SUR to estimate biomass as it provides greater statistical 
efficiency than separately calculated equations for each 
component (Bi et al. 2010; Bi et al. 2004; Kozak 1970; 
Návar et al. 2002; Návar, Méndez et al. 2004; Parresol 
2001).

Although this study focused on testing different 
procedures to fit biomass equations and highlighted 
the importance of SUR, there could be concerns over 
the applicability of the resulting models given the size 
of the dataset from the trial. While applying these 
models, it is advisable to consider that the dataset used 
was relatively small with only 24 trees of the same age 
class, with D (8.2 to 28 cm), H (8.85 to 13.77 m), and 
CrL (0.2 to 6 m). Small sample sizes may provide biased 
estimates, as the allometric parameters are sample 
size dependent (Duncanson et al. 2015). In addition, 
the models developed were based on only two out of 
five clones, selected across a range of treatment plots. 
Extrapolation should be avoided as uncertain prediction 
errors are expected from the selected models. The site 
characteristics (Duncanson et al. 2015; Madgwick 1994; 
Mason 2008), growth inputs (Dong et al. 2015), tree age 

D Diameter at breast height (cm)

H Total tree height (m)

D2H Product of H and D2 (cm2.m)

CrL Crown length (m)

NF New foliage

OF Old foliage

Foliage Sum of cone, NF and OF biomass (kg) 

Crown Sum of foliage and branch biomass (kg)

Bole Sum of stem and bark biomass (kg)

Components Cone, NF, OF, bark, branch, stem 

Subtotal Foliage, crown and bole 

AGT Sum of all components (above-ground  
total biomass) in kg

λ Variable-specific transformation coefficient  

β Variable-specific parameter estimate

Ŷco, Ŷnf, Ŷof, Ŷbr, 
Ŷba, Ŷst, Ŷfol, Ŷcr, 
Ŷbol, ŶAGT

Predicted biomass in kg for cone, NF, OF,  
branch, bark, stem, foliage, crown, bole  
and AGT, respectively.
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LINOLS
Equation Tested models Fitted best with
i Stem, Bark, Foliage, Bole, AGT
ii Cone
iii Branch
iv
v
vi
vii
viii NF,Crown
ix OF

NLINOLS
Equation Tested models Fitted best with
i Stem, NF, OF, Cone, Foliage, Bole, AGT
ii
iii
iv Bark
v Branch, Crown
vi
vii

TABLE A.1: Tested linear and nonlinear ordinary least-squares equations with their best-fit results.

APPENDIX
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Component
M

od
el

Fit statistics Parameter estimates

RM
SE

M
AB

M
PE

RS
E

CV
%

R2 IO
A

β0 β1 β2

LINOLS best models
Stem i 4.86 3.39 23.66 5.08 8.05 0.98 0.99 −6.691*** 

(0.493)
3.264***
(0.0986)

Branch iii 8.03 4.93 64.54 8.59 46.12 0.85 0.96 −5.803*** 
(0.666) 

1.981***
(0.149)

−0.049* 
(0.0196)

Bark i 0.88 0.6 0.77 0.92 16.99 0.94 0.98 −4.983***
(0.373)

1.416***
(0.074)

NF viii 0.9 0.61 0.8 0.94 26.63 0.92 0.97 −3.803*** 
(0.792)

0.992***
(0.137)

−0.054* 
(0.033) 

OF ix 2.88 2.11 8.29 3.01 21.85 0.96 0.98 −2.87 ***
(0.441)

1.064***
(0.079)

−0.009**
(0.0024)

Cone ii 2.74 1.78 7.52 2.86 75.23 0.48 0.78 −2.301** 
(0.769)

0.132***
(0.029)

Foliage i 4.56 3.18 20.8 4.76 22.59 0.94 0.98 −3.259*** 
(0.393)

1.213***
(0.079)

Crown viii 15.36 9.02 235.92 16.04 40.85 0.82 0.96 −0.731 ns 
(0.51)

0.693***
(0.089)

−0.046*
(0.021)

Bole i 5.29 3.77 27.95 5.52 8.05 0.98 0.99 −7.003*** 
(0.51) 

3.403***
(0.102)

AGB i 17.13 11.42 293.5 17.89 16.59 0.96 0.98 −1.182*** 
(0.244)

1.309*** 
(0.049)

NLINOLS best models
Stem i 5.27 3.88 27.72 5.5 8.71 0.97 0.99 0.292*** 

(0.069)
1.803*** 
(0.075)

Branch v 6.87 4.3 47.18 7.34 39.44 0.89 0.97 0.517 ns 
(1.126)

3.791*** 
(0.474)

−3.199*** 
(0.645)

Bark iv 0.9 0.6 0.8 0.94 17.31 0.92 0.98 0.0021 ns 
(0.001)

0.931*** 
(0.071)

NF i 0.88 0.61 0.77 0.92 26.14 0.9 0.97 0.001 ns 
(0.001)

2.868*** 
(0.269)

OF i 2.42 1.79 5.86 2.53 18.37 0.95 0.99 0.001 ns
(0.001)

3.044***
(0.195)

Cone i 2.64 1.71 6.98 2.76 72.46 0.51 0.82 0.001 ns 
(0.002)

2.861**
(0.762)

Foliage i 4.41 3.03 19.42 4.6 21.83 0.93 0.98 0.003 ns
(0.002)

2.985***
(0.23)

Crown v 8.56 5.73 73.19 9.15 22.75 0.95 0.99 0.156 ns
(0.19)

3.456***
(0.264)

−1.987***
(0.379)

Bole i 5.76 4.25 33.15 6.01 8.77 0.97 0.99 0.302***
(0.072)

1.819***
(0.076)

AGB i 16.34 11.24 266.87 17.06 15.82 0.95 0.99 0.095*
(0.045)

2.347***
(0.149)

TABLE A.2: Goodness-of-fit statistics across best LINOLS and NLINOLS regression models for each biomass component. 
Table shows parameter estimates, their standard error between parentheses and significance indicated as: 
ns, non significant, *, P<0.05; **, P<0.01; ***, P<0.001. 

Note: The estimated parameter values are presented in power-transformed scale. Model i, ii, iii and so on refers to the best-fitted equations 
given in Table A.2.


