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Abstract

Background: Relying solely on radiata pine (Pinus radiata D.Don) leaves New Zealand’s plantation forest industry 
vulnerable to fluctuations in market demand and at risk from a potentially devastating pest or disease outbreak. Therefore, 
the New Zealand government and forestry industry urge to diversify the forest resource and wood supply beyond the 
reliance on radiata pine. Unfortunately, the lack of accurate information on minor species’ area, composition, and location 
poses challenges to forecasting potential log supply and logistics planning. 

Methods: The objective of this study is to classify minor species in New Zealand using imagery and phenological features 
extracted from data collected by the Copernicus Sentinel-2 satellite. The study collected reference data of minor species 
from large-scale forest owners and applied Random Forest classification using Sentinel-2 imagery to classify nine minor 
species classes in the Hawke’s Bay region of New Zealand.

Results: The study achieved an overall classification accuracy of 92.2% for minor species in New Zealand’s Hawke’s Bay 
region. Douglas-fir (Pseudotsuga menziesii (Mirb.) Franco) and Eucalyptus species had the highest accuracies, exceeding 
90% for both producer’s and user’s accuracies. Acacia, larch, and other mixed species had lower accuracies, likely due to 
their lower occurrence. The most important input variable for classification was the Digital Elevation Model, indicating the 
significance of elevation in differentiating plantation species. The Greenness Index (GI) and Red edge bands also proved 
useful in the classification. The phenological measure Mean-EVI2 was found useful in classifying deciduous species such 
as larch and poplar.

Conclusions: To the best of our knowledge, this study is the first to map the spatial extent and distribution of minor 
plantation species in New Zealand at the regional level, providing promising results for potentially expanding the study to 
national-level species mapping. 
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species and cypress species (e.g. Cupressus macrocarpa 
(Hartw.) and Cupressus lusitanica Mill.). In order to 
model the potential sustainable log supply from these 
minor species, it is critical to understand the area and 
location of existing resources. 

The National Exotic Forest Description (NEFD) is 
compiled by the Ministry for Primary Industries (MPI) 
to maintain an authoritative database of New Zealand’s 
production forests. In 2021, the NEFD recorded a total of 
168,000 hectares for New Zealand’s minor species forest 
plantations, which comprises Douglas-fir, cypresses, 
eucalypts and other softwoods and hardwoods (MPI 
2021). However, the NEFD is a non-spatial database and 
lacks reliability and accuracy for describing the small-

Introduction 
Plantation forests in New Zealand cover an estimated 
1.74 million hectares (MPI 2021); nearly 90% of the 
forests are radiata pine (Pinus radiata D.Don). Relying on 
a single species potentially leaves the forestry industry 
vulnerable to fluctuations in market demand and at risk 
from a devastating pest or disease outbreak. There is 
increasing interest in diversifying forest resources in 
New Zealand. The Specialty Wood Products Research 
Partnership (SWP) was established as a partnership 
between government and industry aiming to develop 
a high-value speciality wood products industry based 
on species other than radiata pine, such as Douglas-
fir (Pseudotsuga menziesii (Mirb.) Franco), Eucalyptus 
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scale plantation forests (less than 1000 ha), especially 
the forests that are under 40 ha (Manley et al. 2017; 
Manley et al. 2020). These limitations particularly 
restrict the understanding of minor species resources 
and complicate modelling the log supply. 

Often, plantations of minor species are small and 
fragmented with limited accessibility, which makes 
it impractical to inventory the minor species through 
ground measurements. Therefore, a remote sensing 
approach which acquires information on resources 
without physical contact offers an alternative approach 
for describing forest resources. It provides opportunities 
to efficiently and cost-effectively identify forest species 
information, determine spatial distribution, and allow 
for frequent updates (White et al. 2016). Forest species 
mapping with remote sensing has been conducted 
worldwide, employing a range of technologies such as 
low- to high-resolution multispectral satellite imagery 
(Fassnacht et al. 2016; Grabska et al. 2020), Light 
Detection and Ranging data (Shi et al. 2018), unmanned 
aerial vehicle (UAV) images (Schiefer et al. 2020) and 
fusion of different sensors (Immitzer et al. 2018; Wang 
et al. 2018). 

Although very high resolution imagery would be ideal 
in classifying multiple forest species, the cost and limited 
coverage have hindered the potential to map small-scale 
plantations across a large geographic area (Williams et 
al. 2021). Free 10-m resolution imagery obtained from 
the Copernicus Sentinel-2 satellite has gained popularity 
in forest mapping studies worldwide due to its relatively 
high spatial and spectral resolution. Alonso et al. (2020) 
classified fragmented chestnut plantations in Northwest 
Spain using images obtained from the Sentinel-2 satellite 
and achieved 81.5% accuracy. Wan et al. (2021) fused 
high-resolution aerial images with Sentinel-2 images to 
segment forest stands and classified 11 tree species on a 
forest farm, with classification accuracies ranging from 
90% to 91.3%. 

Forest species mapping can be challenging in large 
areas with diverse forest compositions and diverse 
environmental conditions. Several studies have 
demonstrated successful classification of forest species 
over larger geographic scales by incorporating temporal 
variations in input image data. Punalekar et al. (2021) 
applied the ExtraTree classifier to Sentinel-2 images 
collected over 4.5 years to classify national-level larch 
forest plantations in Wales, with all mapping accuracies 
above 90% when compared against an independent 
reference dataset. Hamrouni et al. (2021) proposed an 
active learning-based approach to map national-level 
poplar plantations in France using the Sentinel-2 time 
series. Schindler et al. (2021) applied a random forest 
classifier to map the national extent of southern beeches 
using a temporal stack of Sentinel-2 imagery acquired 
between 2016-2019 and achieved an accuracy of 87.7%. 
Hościło and Lewandowska (2019) used the random 
forest classifier to identify eight tree species in a sizable 
forest in southern Poland; by merging topographic data 
with multi-temporal Sentinel-2 data, they improved the 
overall classification from 75.6% to 81.7%. 

Previous studies utilising Sentinel-2 imagery for 
tree species classification have primarily focussed on 
multiple species but within a small geographical extent 
(Grabska et al. 2019; Immitzer et al. 2016; Karasiak 
et al. 2017), or on classifying a single species over a 
large extent (Alonso et al. 2020; Punalekar et al. 2021; 
Schindler et al. 2021). In addition, species classification 
studies worldwide have predominantly concentrated 
on large forests, with only a limited number of studies 
addressing the classification of multiple species in small-
scale forests dispersed across a broad geographic scale. 
Therefore, this study aims to explore the feasibility of 
classifying multiple species for small forests dispersed 
over a large regional scale in New Zealand, in order to 
understand the spatial distribution and area of these 
minor tree species. 

Specifically, the objectives of this study are to:

(1) Classify minor tree species in New Zealand’s 
Hawke’s Bay Region using input features extracted from 
Sentinel-2 satellite data; and

(2) Identify the important features in classifying 
minor plantation species. 

Methods 
Study area
The study area is in the Hawke’s Bay region of New 
Zealand, which is located on the east coast of New 
Zealand’s North Island (39°25′S, 176°49′E). The region 
covers 1.42 million hectares and consists of the Wairoa 
District, Hastings District, Napier City and Central 
Hawke’s Bay District (Figure 1). Forests mainly occupy 
the roughest terrain on the northern and eastern side of 
the region (Hawke’s Bay Regional Council 2022). There 
are around 139,000 hectares of plantation forests in 
Hawke’s Bay, owned by companies, investors, individual 
landowners and a small amount by the Hawke’s Bay 
Regional Council. Nearly 20% of the forests are less 
than 100 hectares in size. The NEFD reported 3,190 ha 
of minor species in the Hawke’s Bay region, comprising 
445 hectares of Douglas-fir, 961 hectares of Eucalyptus 
species, 368 hectares of cypress species, 917 hectares of 
other softwoods and 499 ha of other hardwoods (MPI 
2021). However, the spatial distribution of these minor 
species and a detailed species breakdown are unknown. 

Reference data collection
Ground reference data plays a crucial role in the 
classification process. Ground reference data with known 
location and species are required to perform species 
classification. The data should be representative and 
cover all relevant species and all existing age classes and 
growing conditions so that the classification algorithm 
can learn what a forest species ‘looks like’ spectrally and 
texturally from remote sensing imagery and then classify 
pixels with similar features accordingly. Therefore, the 
first step of the project was to investigate the availability 
of ground reference data.
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TABLE 1: Description of the study sites

FIGURE 1: Location of the study area. Map A gives an overview of New Zealand regions. Map B shows the boundary of 
Hawke’s Bay region and four territorial authorities in the region. Map C shows the location of the sample plots, including 
the reference data from the Central North Island region.



Due to lack of an official record of minor species and 
the impracticality of visiting each plantation in New 
Zealand, ground reference data were intended to be 
collected from owners of minor species. The spatially 
explicit reference data were collected from large-scale 
owners in geographic information system (GIS) format, 
whereas no data was collected from the small-scale 
owners due to the absence of spatial records. 

An email request was sent to eleven large-corporate 
owners in Hawke’s Bay enquiring about the spatial 
location of their minor species plantations in June 
2021. All owners responded and provided locations of 
1,130 hectares of minor species in the region, of which 
53% (598 ha) were Eucalyptus species; Douglas-fir 
(Pseudotsuga menziesii), cypress (Cupressus species), 
redwood (Sequoia sempervirens (D.Don) Endl.), other 
pine (non-Pinus radiata), Acacia (Acacia species), larch 
(Larix species); while, other minor species made up the 
remaining 47% (Table 1). In addition, over one-third of 
the resource was aged five years or below. That means 
they are less likely to be detected from satellite imagery 
compared with mature forests. 

We considered the reference data received from 
large-scale owners in Hawke’s Bay, imbalanced and 
insufficient as we are concerned the reference data only 
cover small areas and may not be representative for these 
minor species. Therefore, we requested additional data 
from large-scale owners from the Central North Island 
(CNI) region which is located adjacently (Figure 1). The 
ground reference data from CNI and Hawke’s Bay were 
combined. Within the provided GIS boundaries, 2,788 
circular plots with 50 m radius were automatically and 
randomly generated at least 100 metres apart from each 
other. Occasionally, there are plots that extend beyond 
the stand boundary, which happens in the case of very 
small forest stands that are less than 50 metres in width. 
In such instances, these plots were adjusted to align with 
the forest stand boundaries to ensure that they cover 
only one species at a time. These plots were then used 
as the sample data for species classification (Map C on 
Figure 1). A quick visual inspection was conducted to 
the plots to ensure there were trees present so that the 
reference data was valid. The sample data was randomly 
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split into 70% for training and 30% for validation. A 
summary of the ground reference data for each target 
classification class is described in Table 2. 

Sentinel imagery 
The national Sentinel-2 mosaic was processed by 
Manaaki Whenua - Landcare Research based on workflow 
developed by Shepherd et al. (2020) and distributed by 
the Ministry for the Environment (MfE), New Zealand. 
The image product is a 10 m, ten-band multispectral, 
cloud-minimised mosaic of multiple Sentinel-2A and 
-2B satellite images over New Zealand and was acquired 
from late 2019 to early 2022 (Table 3). The mosaic went 
through pan-sharpening, atmospheric and bidirectional 
reflectance distribution function correction, cloud 
clearing and a minimising process. 

The national mosaic imagery was then clipped to the 
extent of the study area to only include Hawke’s Bay and 
Central North Island. The latest Land Cover Database 
(LCDB v5.0) (Landcare Research 2021), which is a multi-
temporal, thematic classification of New Zealand’s land 
cover, was used to mask out non-plantation forest areas.
 
Input features
Vegetation indices (VIs), which are the spectral 
transformation of two or more spectral bands, are useful 
in detecting spectral response variations in foliage and 
have considerable advantages in cellular structure 
evaluation, stress prediction, moisture content estimate, 
pigment content detection, and stress estimation 
(Immitzer et al. 2019). In total, 33 vegetation indices, 
which are sensitive to vegetation properties and have 
been previously used in vegetation classification studies 
(Immitzer et al. 2019; Ye et al. 2021), were extracted 
from the Sentinel-2 mosaic. 

Textural features are mainly related to the variability 
of stand density, forest type (broadleaved, coniferous), 
crown size, crown closure, crown form, and crown 
closure (Fassnacht et al. 2016). They can considerably 
enhance the classification accuracy when combined 
with spectral features (Mallinis et al. 2008). For this 
study, due to multiple input bands from the Sentinel-2 
mosaic, a Principle Component Analysis (PCA) was 

Species Group Scientific Name Hawke’s Bay (ha) Central North Island (ha)

Acacia Acacia species 25 65

Cypress Cupressus species 74 858

Douglas-fir Pseudotsuga menziesii 183 12,841

Eucalyptus Eucalyptus species 598 2,303

Larch Larix species 23 43

Other pine Pinus species other than radiata pine 26 267

Redwood Sequoia sempervirens 57 967

Other species Other minor species 144 482

Total (ha)   1,130 17,826

TABLE 1: Area of minor plantation species in the Hawke's Bay and Central North Island regions based on data received 
from large-scale forest owners.



performed. The first principle band, which holds most of 
the data variance, was used to extract textural features. 
Textural metrics including the Grey Levels Co-Occurrence 
Matrix (GLCM) of mean, variance, homogeneity, contrast, 
dissimilarity, entropy, second moment and correlation 
were computed at a 3 pixel × 3 pixel window size.

Phenological features were derived from analysing 
the temporal variation of Enhanced Vegetation Index-2 
(EVI2) using Sentinel-2 data (Level-2A product – 
Surface Reflectance) collected from 1 January 2019 to 
31 December 2020 in Google Earth Engine (GEE). EVI2 
was chosen because it is one of the most commonly used 
VIs for phenological studies, as reviewed by Caparros-
Santiago et al. (2021). It was developed by Jiang et al. 
(2008) to address the saturation issue of the Normalized 
Difference Vegetation Index (NDVI) in areas with high 
biomass and to avoid using the blue band, which lacks 
vegetation characteristic information in the calculation 
(Wang et al. 2018). In addition, when comparing the 
differences and consistency of the remote sensing data 
(AVHRR, MODIS, VIIRS, SPOT-VGT, and SeaWiFS) for the 
characterisation of tropical forest phenology, Kim et al. 

(2007) discovered that EVI2 outperformed NDVI and EVI. 
Harmonic (Fourier) analysis has a low sensitivity to 

non-systematic noise so it was used to represent the 
seasonal dynamic of the land surface and to extract 
phenological information (Derwin et al. 2020; Wu et al. 
2021). By linearly mixing the sine and cosine functions, 
the algorithm can simulate symmetric seasonal variation 
(Shumway et al. 2000). The original GEE code was created 
by Clinton (2016) for time-series Landsat-8 data analysis, 
and it was modified to retrieve Sentinel-2 image collection 
for this study. Three seasonal metrics, amplitude (AMP), 
phase (PH) and mean EVI2 of the period, were extracted. 
Phase measures the length of the change’s time window, 
whereas amplitude shows the size of the shift relative to 
a baseline.

In addition, a Digital Elevation Model (DEM) was 
retrieved from Land Information New Zealand (LINZ) 
(LINZ 2020) and was re-sampled to 10 m to be consistent 
with the rest of the input features. In total, 55 features 
were extracted using the remote-sensing software ENVI 
version 5.6 (ENVI 2021); Table 4. More details of the 
vegetation indices can be found in Appendix 1. 

Xu et al. New Zealand Journal of Forestry Science (2023) 53:12							                      Page 5

Species Class No. of Training pixels No. of Validation pixels Total No. of Truthing pixels
Acacia 1,770 758 2,528
Cypress 9,264 3,970 13,234
Douglas-fir 40,432 17,328 57,760
Eucalyptus 14,376 6,160 20,536
Larch 1,465 627 2,092
Other pine 4,813 2,062 6,875
Poplar 1,356 580 1,936
Radiata pine 27,399 11,742 39,141
Redwood 4,792 2,053 6,845
Other species 6,835 2,928 9,763
Total 112,502 48,208 160,710

Band Band Name Short Name Wavelength (nm)
2 Blue B 490
3 Green G 560
4 Red R 665
5 Red Edge 1 RE705 705
6 Red Edge 2 RE740 740
7 Red Edge 3 RE783 783
8 Near Infrared wide NIR842 842
8A Near Infrared narrow NIR865 865
11 Short Wave Infrared 1 SWIR1610 1610
12 Short Wave Infrared 2 SWIR2190 2190

TABLE 3: Bands specification of Sentinel-2 mosaic.

TABLE 2: Description of training and validation data for each species class. Each pixel represents a 10 × 10 m grid. 
Radiata pine samples were manually added as placeholders in the classification. ‘Other pine’ are pine species other than 
radiata pine. Other species include other minor species that are not listed in the table.



Species classification
Random forest is a machine learning algorithm applied 
widely in image classification because of its high 
prediction accuracy and the ability to handle high-
dimensional data. The classifier is an ensemble of 
independent individual decision trees, each individual 
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TABLE 4: List of 55 input features used for species classification.

Abbreviation Name
Spectral bands
Blue Blue band
Green Green band
Red Red band
RE705 Red Edge 705 nm
RE740 Red Edge 740 nm
RE783 Red Edge 783 nm
NIR842 Near Infrared 842 nm
NIR865 Near Infrared 865 nm
SWIR1610 Short-wave infrared 1610 nm
SWIR2190 Short-wave infrared 2190 nm
Textural  
GLCM_Mean Local mean of Gray-Level Co-

Occurrence Matrix (GLCM)
GLCM_Variance Local variance of GLCM
GLCM_Homogeneity GLCM Homogeneity
GLCM_Contrast GLCM Contrast 
GLCM_Dissimilarity GLCM Dissimilarity
GLCM_Entropy GLCM Entropy
GLCM_2ndMoment GLCM 2nd Moment
GLCM_Correlation GLCM Correlation
Phenology  
Mean EVI2 The average Enhanced 

Vegetation Index 2 (EVI2)
EVI2 phase The phase of EVI2
EVI2 amplitude The amplitude of EVI2
Topography  
DEM Resampled 10 m Digital 

Elevation Model 
Vegetation Indices  
EVI2 Enhanced Vegetation Index 2
GEMI Global Environmental 

Monitoring Index
GARI Green Atmospherically Resistant 

Index
GCI Green Chlorophyll Index
GI Greenness Index
GNDVI Green Normalised Difference 

Vegetation Index

Abbreviation Name
Vegetation Indices
LAI Leaf Area Index
MCARI_I Modified Chlorophyll Absorption 

Ratio Index – Improved
MNLI Modified Non-Linear Index
MNDWI Modified Normalised Difference 

Water Index
MSR Modified Simple Ratio
MSAVI2 Modified Soil Adjusted Vegetation 

Index 2
MTVI_I Modified Triangular Vegetation Index 

– Improved
NDVI Normalised Difference Vegetation 

Index 
OSAVI Optimized Soil Adjusted Vegetation 

Index
RENDVI Red Edge Normalised Difference 

Vegetation Index
REPI Red Edge Position Index
RGRI Red Green Ratio Index
RDVI Renormalised Difference Vegetation 

Index
SAVI Soil Adjusted Vegetation Index
NIR_R Simple Ratio NIR/red
B_RE705 Simple Ratio blue/RE705
B_RE740 Simple Ratio blue/RE740
B_RE783 Simple Ratio blue/RE783
NIR_B Simple Ratio NIR/blue
NIR_G Simple Ratio NIR/green
NIR_RE705 Simple Ratio NIR/RE705
NIR_RE740 Simple Ratio NIR/RE740
NIR_RE783 Simple Ratio NIR/RE783
TCARI Transformed Chlorophyll Absorption 

Reflectance Index
TVI Triangular Vegetation Index
VARI Visible Atmospherically Resistant 

Index
WDRVI Wide Dynamic Range Vegetation 

Index

decision tree in the classifier casts a vote for the class 
that should be applied to the given sample, and the class 
that receives the most votes wins (Breiman 2001). The 
algorithm does not require distributional assumption 
and is less sensitive to the number of input variables and 
overfitting (Fassnacht et al. 2016). Pelletier et al. (2016) 



compared classification algorithms and concluded 
random forest is most robust in mapping land cover 
over large areas by producing the highest classification 
accuracy with the shortest training time, as well as 
being less affected by parametrisation and number of 
training samples. Therefore, pixel-based classification 
with the random forest classifier was applied using 
the “randomForest” package (Liaw & Wiener 2002) in 
statistical package R (R Core Team 2013). 

Due to high dimensional input features and target 
species classes, a feature selection process using the 
“VSURF” package (Genuer et al. 2015) was applied to 
eliminate redundant variables and reduce computation 
time for classification. Based on findings from Speiser 
et al. (2019), Variable Selection Using Random Forests 
(VSURF) outperformed other feature selection methods 
for random forest classification. After the classification, a 
majority filter (with 3 x 3 neighbours) was applied to the 
classification image to minimise the occurrence of small 
isolated pixels. 

Accuracy assessment
The accuracy of classification was assessed using the 
confusion matrix (Congalton 2001), which compares 
the classified and reference species classes based on the 
validation dataset. Measures such as the overall accuracy, 
producer’s accuracy (PA) and user’s accuracy (UA) were 
calculated for individual classes. The overall accuracy 
indicates the proportion of pixels that were correctly 
classified out of all the reference pixels. The PA, which 
is related to omission error, reflects the probability of a 
species class being correctly classified. The UA relates to 
the commission error, which represents the probability 

that a pixel classified into a given species actually 
represents that species on the ground. 

Application of classification
The random forest classification was applied to the 
forested areas in Hawke’s Bay region. The spatial extent 
of the small-scale minor forests, which was manually 
delineated based on LINZ 30 cm aerial photos by the 
School of Forestry, University of Canterbury, New Zealand 
was used to clip the classification result so that the area 
summary of classified species only applies to minor 
species. Furthermore, the area summary was conducted 
for small-scale and large-scale plantations separately, 
and the area of each species class was summarised and 
compared with the NEFD record of minor species.

Results and Discussion

Spectral signature of tree species
Different land covers absorb, emit and reflect different 
wavelengths of the electromagnetic spectrum. A 
predictive model known as “spectral signatures” was 
created using multivariate statistical algorithms using 
reference data and multi-spectral satellite data for the 
same sites in order to categorise the satellite image into 
different types of land cover (Laborte et al. 2010). 

Prior to species classification, the spectral signature 
of each tree species indicating how species’ reflectance 
differs between the wavelength bands, was examined 
to understand the potential separability of different 
species (Figure 2). The spectral signature suggests 
that generally, all tree species reflect similarly within 
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FIGURE 2: Spectral signature of different species.



the visible wavelength (400-700 nm) but illustrate 
the higher separation between the reflectance in the 
red edge and NIR spectrum (700-1300 nm). The SWIR 
spectrum (1300 -2500 nm) also indicated some level of 
separation of reflectance. The spectral signature of all 
species showed a preliminary possibility of separating 
tree species at the RE, NIR and SWIR spectrum. The 
reflectance characteristics of individual leaf components 
play the main role in how radiation interacts with 
vegetation. Chlorophyll, carotenoids, and anthocyanins, 
which are pigments found in leaves, absorb incident light 
to produce the majority of the visible spectrum’s signal. 
Water absorption is the main factor in the NIR spectrum. 
Water has a major role in determining the reflectance in 
the SWIR region, although nitrogen and different types 
of carbon also contribute significantly to the reflectance 
(Asner 1998).

Classification accuracy 
The species classification with all 55 input features 
achieved an overall accuracy of 92.2% and kappa 
coefficient of 89.0%. Twelve input features were selected 
from VSURF and the classification with 12 selected 
variables produced almost identical overall classification 
accuracy (92.3%) and kappa coefficient (89.1%) as 
using all input variables. The differences in the user’s 
and producer’s accuracies for individual species were 
also minimal (Table 5). However, classification using 
all 55 metrics was more time-consuming. Therefore, 
the classification algorithm with 12 selected variables 
was chosen to be applied to the whole study area due to 
similar accuracy and reduced computation time. 
Douglas-fir and Eucalyptus were the two most accurately 
classified species (Table 5), with PA over 90%. These two 
classes also contained more reference data than other 
species classes. On the other hand, acacia was the least 
accurately classified class, with PA of 59.4% and UA of 
88.8%. Other species with potentially more than one 
species were also less accurately classified (PA of 75.0% 
and UA of 89.1%). All species classes achieved high 
user’s accuracies (over 85%). 

There is no standard definition for the minimal 
classification accuracy for classifying tree species 
because it always relies on the study’s location and goals. 

However, it is generally agreed, following the suggestion 
of Thomlinson et al. (1999), that the minimum accuracy 
requirements were 85% overall accuracy with no 
class-specific accuracy below 70% (Fassnacht et al. 
2016) . The overall accuracy 92.3% well exceeded the 
minimum overall accuracy, and all individual species 
classes were above the minimum accuracy for individual 
class except for acacia and other exotic species. The 
overall classification accuracy for classifying multiple 
tree species was comparable with other studies using 
Sentinel-2 imagery, e.g. Bolyn et al. (2018) classified 10 
tree species with an overall accuracy of 88.9%, Persson 
et al. (2018) produced an overall accuracy of 88.2% for 
classifying five tree species in a Swedish forest, Grabska 
et al. (2019) achieved up to 92.38% overall accuracy for 
classifying nine tree species. 

Overall, this study successfully classified forest species 
in highly fragmented forests over a large geographic 
area, with a wide range of input variables including 
spectral bands, vegetation indices, phenological features 
and DEM, and produced satisfactory classification 
accuracies. However, it is challenging to achieve high 
accuracies for certain tree species (e.g. acacia and other 
species). Similarly, Immitzer et al. (2016) also observed 
lower classification accuracies for those tree species 
which are either uncommon in the study area or within 
mixed stands. 

Input features
After running VSURF variable selection process, twelve 
out of 55 input variables were selected for species 
classification, each contributing differently to the species 
classification (Figure 3). According to the importance 
score of all variables, DEM was the most useful variable 
for classifying all minor species, suggesting that elevation 
plays an important role in differentiating plantation 
species in the study area. DEM was also found as the most 
important contributor to land cover and forest species 
classification in other studies (Ye et al. 2021; Zhang & 
Yang 2020). Elevation influences the distribution of 
minor plantation species for various reasons. Firstly, 
it affects climate conditions, with varying elevations 
corresponding to distinct temperature, solar radiation, 
and precipitation levels to which minor species have 
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Feature Acacia Cypress Douglas-fir Eucalyptus Larch Other 
pine

Poplar Redwood Other 
species 

All features                  
PA 0.590 0.899 0.980 0.956 0.762 0.872 0.872 0.851 0.754
UA 0.892 0.940 0.924 0.918 0.931 0.936 0.939 0.910 0.894

Selected features                  
PA 0.594 0.910 0.979 0.954 0.766 0.878 0.886 0.853 0.750
UA 0.888 0.936 0.921 0.906 0.909 0.941 0.935 0.905 0.891

TABLE 5: The producer’s accuracy (PA) and user’s accuracy (UA) for each species. All features mean species classification 
uses all 55 input features, while selected features mean classification uses VSURF (12) selected features. Detailed 
Confusion Matrices can be found in Appendices 2 and 3.



adapted (Körner 2007). Additionally, topographic 
features associated with elevation can impact how 
sunlight is distributed across slopes and aspects, further 
shaping trees’ survival and productivity (Stage & Salas 
2007).

Four original spectral bands, two RE and two SWIR 
bands were also identified as useful variables, which 
shows consistency of findings from the spectral signature 
of species (Figure 3). RE and SWIR bands were also 
identified as high-value bands for forest species mapping 
(Immitzer et al. 2016) and land cover classification 
(Schuster et al. 2012) in earlier studies. In tree canopies, 
the amount of radiation reflected at various wavelengths 
varies according to the chemical makeup of the tissue, 
which includes water, light-harvesting pigments, and 
structural carbohydrates (Asner 1998). The sharply 
sloping portion of the vegetation reflectance curve 

between 690 nm and 740 nm, which is brought on by 
the change from chlorophyll absorption to near-infrared 
leaf scattering, is known as the red edge. The amount 
of chlorophyll in the vegetation can be estimated by 
using near-infrared measurements, which have a far 
deeper penetration depth through the canopy than 
red bands (Sims & Gamon 2002). Visible and RE bands 
are dominated by absorption from foliar pigments, 
making them effective for classifying vegetation 
(Hennessy et al. 2020). In this study, RE bands were 
found particularly helpful in discriminating poplar, pine, 
redwood and cypress species based on the importance 
scores (Figure 3). SWIR bands, which are less affected 
by the atmosphere, and are capable of detecting water 
contents in soil and forest canopy, were found useful 
in discriminating forest types, especially evergreen 
coniferous forests (Murakami 2006). SWIR bands were 
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FIGURE 3: The importance score of the selected variables for each species class.
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found particularly useful in classifying redwood, radiata 
pine, cypress and larch in this study. 

Vegetation Indices (VIs) combine the surface 
reflectance at two or more wavelengths to emphasise 
a specific characteristic of vegetation, such as 
photosynthetic activity and canopy structure. They 
enhance the sensitivity of spectral properties of 
vegetation while reducing spectral disturbance (Glenn et 
al. 2008). VIs describe the biochemical and physiological 
properties of vegetation that could contribute to the 
vegetation classification. Six out of the twelve variables 
were vegetation indices (GI, TCARI, B_RE705, RENDVI, 
NIR_RE740 and NIR_RE705). GI, which is the ratio of the 
green and red band, is a chlorophyll index which was 
found empirically related to leaf chlorophyll content 
(Smith et al. 1995). It is believed that measurement of 
chlorophyll concentration may reveal information about 
the physiological state of the plant, as well as nitrogen 
levels and hence photosynthesis (le Maire et al. 2004). 
In this study, GI appeared to be useful in differentiating 
forest species, particularly for poplar, eucalyptus and 
cypress. Similarly, another chlorophyll index TCARI, 
which describes the chlorophyll’s relative abundance, 
was also identified as an important feature, especially 
for classifying redwood and radiata pine. It tends to be 
sensitive to detecting the reflectance of the underlying 
soil, especially in vegetation with a low Leaf Area Index 
(LAI) (Haboudane et al. 2004). RENDVI is an adjustment 
to the standard NDVI by employing bands along the red 
edge to replace the primary absorption and reflectance 
peaks. It takes advantage of how sensitive the vegetation’s 
red edge is to even little variations in canopy leaf content, 
gap fraction, and senescence (Gitelson & Merzlyak 1994). 
RENDVI was found useful in discriminating radiata pine 
and other pine species in this study. 

Three simple ratios (B_RE705, NIR_RE740 and NIR_
RE705) that took the advantages of the blue, RE and 
NIR bands, were found more useful in classifying poplar, 
radiata and other pine species. B_RE705 ratio was found 
useful in landcover classification, particularly for low 
vegetations (Radoux et al. 2016). Datt (1999) found that 
the NIR_RE705 ratio correlated well with the chlorophyll 
content (up to Pearson-r = 0.83) of Eucalyptus species 
and can be used as an indicator of growth for woody 
vegetation. NIR_740 which was derived based on Datt 
(1999) was also identified as an useful input feature. 

One phenology feature (Mean EVI2), which is the mean 
value of EVI2 over a two-year period, was also selected. 
Phenology is another useful property for identifying 
different tree species. Phenology includes obvious 
temporal processes such as the change of leaf colour 
in deciduous forests in autumn due to leaf senescence 
(primarily related to the faster decomposition of 
chlorophyll pigments), the bright green hues of young 
leaves and needles in the spring, as well as flowering 
events (Chuine & Beaubien 2001). The mean EVI2, 
which allows observation of the temporal change in the 
EVI2 over two growing seasons of plantation species, 
is potentially useful in discriminating evergreen and 
deciduous species, such as larch (Figure 3). According 
to Jiang et al. (2008), EVI2 is a useful VI for tracking 

vegetation development as it can remain sensitive 
to variations in thick vegetation despite not being as 
sensitive to background soil reflectance as NDVI (Rocha 
& Shaver 2009).

Application of results
The classification using a random forest classifier with 
12 selected features was applied to the whole Hawke’s 
Bay region within the extent of non-plantation forest 
areas and pre-defined forest boundaries. This provides a 
spatial representation of all minor species in the Hawke’s 
Bay region. 

In Hawke’s Bay, a total of 2,151 ha of minor 
species were classified in the small-scale forests. The 
classification suggests that the most common minor 
species for small-scale owners are Eucalyptus species, 
with 671 ha mapped accounting for 31% of all small-
scale minor species (Figure 4), followed by cypress and 
poplar (18% and 17% respectively). Acacia, other pine 
and larch are the least planted minor species (less than 
20 ha) in Hawke’s Bay region. The other species account 
for 17% of all small-scale plantations (376 ha), but the 
actual species distribution is unknown due to limited 
reference information. When summarised together with 
the data provided by the large-scale owners, the total 
distribution of all minor species in Hawke’s Bay can be 
obtained (Figure 4). 

When comparing the area with the official NEFD 
record, the total area of minor species is 3281 ha, which 
is 91 ha (3%) more than the total NEFD-reported area 
(Table 6). We were only able to compare three species 
classes as NEFD did not summarise more detailed 
species levels. At the species level, apart from Douglas-
fir, both cypress and eucalyptus were estimated to have 
more area than the NEFD area. It is worth noting that 
NEFD lacks spatial representation of plantation forests 
and the area summary for Hawke’s Bay region may not 
be accurate (Manley et al. 2020).

Limitation and opportunities 
This study applied a random forest classifier to 
automatically classify minor species and achieved 
promising classification accuracy for most species. 
Due to limited ground reference data in the study 
area of Hawke’s Bay, data from a neighbouring region, 
Central North Island, were also utilised to augment the 
reference dataset. The classification results revealed 
that a larger reference dataset corresponded to higher 
accuracy in species classification. Consequently, the high 
classification accuracies observed in Hawke’s Bay may 
be largely attributed to the abundance of reference data 
from Central North Island. In addition, it is important 
to acknowledge a limitation with the assumption that 
the accuracy and representativeness of the GIS data 
provided by the large-scale owners apply to the small-
scale plantations. 

This study classified nine minor species classes, but 
in reality, understanding the distribution within each 
species class is also critical. For example, there are over 
700 Eucalyptus species, and many have been introduced 
to New Zealand. Each species may have different 
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growth and product characteristics; hence identifying 
individual species becomes critical. In order to classify 
individual species, sub-metre resolution imagery (e.g. 
UAV multispectral imaging) and more detailed reference 
data will be required. This may require field verification 
of species by either visiting the forests with a GPS or 
doing drone surveys of representative minor species 
plantations. 

In this study, classifying species within the same 
genus is not possible given the limited training data and 
10 m resolution imagery. However, with more reference 
data and higher resolution imagery, it might be possible 
to classify individual species within the same genus 
(e.g. Eucalyptus species), given that each species ‘looks’ 
differently from higher resolution imagery. Being able to 

differentiate eucalypts at a species level would improve 
the usefulness of undertaking a national inventory.

Conclusions
This study provides proof of the concept of using 
remote sensing to classify minor species of the small-
scale plantation at a regional level and achieved high 
classification accuracies for most species. The two 
minor species that were most correctly identified were 
Douglas-fir and Eucalyptus species, with over 90% of 
both producer’s and user’s accuracies. It was found 
that the classification accuracy of using random forest 
classifier highly depends on the availability of reference 
data. In total, 2151 ha of small-scale minor species were 
classified for Hawke’s Bay, and a majority of them are 
eucalyptus, cypress and poplar. The Digital Elevation 
Model was the most significant input variable chosen for 
the classification, indicating that elevation is a key factor 
in separating plantation species. Greenness Index (GI) 
and red edge bands are also shown to be helpful in the 
classification. Mean-EVI2, a phenological feature, was 
only discovered to be helpful in classifying deciduous 
species like larch and poplar.

This is one of the very few studies that classified 
multiple forest species in highly fragmented forests 
over a large geographic extent. The spatial distribution 
of minor plantation species in New Zealand was, to the 
best of our knowledge, mapped for the first time at the 
regional level, and the results are encouraging enough to 
continue with species mapping at the national level. To 
further enhance the accuracy of minor species mapping, 
acquiring additional reliable reference data and 

FIGURE 4: Area summary of large-scale and small-scale minor species plantation. Large-scale species was provided by 
owners while small-scale species was estimated from classification.

TABLE 6: The total area of minor species in Hawke’s 
Bay compared with NEFD 2019 area (MPI 2020). The 
areas estimated in this study include both large-scale 
and small-scale. Other species are aggregated due to 
different species class definition in NEFD.

Species Estimated in this study 
(ha)

NEFD Area 
(ha)

Douglas-fir 337 445
Cypress 462 368
Eucalypt 1,269 961
Other 1,213 1,416
Total 3,281 3,190



employing higher resolution imagery could potentially 
improve the identification of more detailed species.
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Appendix 1: Vegetation indices extracted from 
Sentinel-2 imagery. 

Appendix 2: Confusion matrix of classification with all 
input features. It was produced based on 30% validation 
dataset. PA stands for producer’s accuracy and UA stands 
for user’s accuracy. Overall accuracy is 0.922 and kappa 
coefficient is 0.890.

Appendix 3: Confusion matrix of classification with 
12 selected variables. It was produced based on 30% 
validation dataset. PA stands for producer’s accuracy 
and UA stands for user’s accuracy. Overall accuracy is 
0.923 and kappa coefficient is 0.891.
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