Xu et al. New Zealand Journal of Forestry Science (2023) 53:12
https://doi.org/10.33494/nzjfs532023x3 14x

E-ISSN: 1179-5395

Published on-line: 30/10/2023

& SCion

FORESTS=PRODUCTS = INNOVATION

RESEARCH ARTICLE Open Access

New Zealand Journal of Forestry Science

Mapping minor plantation species for New Zealand’s
small-scale forests using Sentinel-2 satellite data

Cong Xu*, Bruce Manley and Ning Ye

New Zealand School of Forestry, University of Canterbury, Private Bag 4800, Christchurch 8140, New Zealand

*Corresponding author: cong.xu@canterbury.ac.nz
(Received for publication 24 May 2023; accepted in revised form 2 October 2023)

Abstract

Background: Relying solely on radiata pine (Pinus radiata D.Don) leaves New Zealand’s plantation forest industry
vulnerable to fluctuations in market demand and at risk from a potentially devastating pest or disease outbreak. Therefore,
the New Zealand government and forestry industry urge to diversify the forest resource and wood supply beyond the
reliance on radiata pine. Unfortunately, the lack of accurate information on minor species’ area, composition, and location
poses challenges to forecasting potential log supply and logistics planning.

Methods: The objective of this study is to classify minor species in New Zealand using imagery and phenological features
extracted from data collected by the Copernicus Sentinel-2 satellite. The study collected reference data of minor species
from large-scale forest owners and applied Random Forest classification using Sentinel-2 imagery to classify nine minor
species classes in the Hawke’s Bay region of New Zealand.

Results: The study achieved an overall classification accuracy of 92.2% for minor species in New Zealand’s Hawke’s Bay
region. Douglas-fir (Pseudotsuga menziesii (Mirb.) Franco) and Eucalyptus species had the highest accuracies, exceeding
90% for both producer’s and user’s accuracies. Acacia, larch, and other mixed species had lower accuracies, likely due to
their lower occurrence. The most important input variable for classification was the Digital Elevation Model, indicating the
significance of elevation in differentiating plantation species. The Greenness Index (GI) and Red edge bands also proved
useful in the classification. The phenological measure Mean-EVI2 was found useful in classifying deciduous species such
as larch and poplar.

Conclusions: To the best of our knowledge, this study is the first to map the spatial extent and distribution of minor
plantation species in New Zealand at the regional level, providing promising results for potentially expanding the study to

national-level species mapping.

Keywords: Minor species; small-scale forests; Sentinel-2 satellite; random forest; species classification

Introduction

Plantation forests in New Zealand cover an estimated
1.74 million hectares (MPI 2021); nearly 90% of the
forests are radiata pine (Pinus radiata D.Don). Relying on
a single species potentially leaves the forestry industry
vulnerable to fluctuations in market demand and at risk
from a devastating pest or disease outbreak. There is
increasing interest in diversifying forest resources in
New Zealand. The Specialty Wood Products Research
Partnership (SWP) was established as a partnership
between government and industry aiming to develop
a high-value speciality wood products industry based
on species other than radiata pine, such as Douglas-
fir (Pseudotsuga menziesii (Mirb.) Franco), Eucalyptus

species and cypress species (e.g. Cupressus macrocarpa
(Hartw.) and Cupressus lusitanica Mill.). In order to
model the potential sustainable log supply from these
minor species, it is critical to understand the area and
location of existing resources.

The National Exotic Forest Description (NEFD) is
compiled by the Ministry for Primary Industries (MPI)
to maintain an authoritative database of New Zealand’s
production forests. In 2021, the NEFD recorded a total of
168,000 hectares for New Zealand’s minor species forest
plantations, which comprises Douglas-fir, cypresses,
eucalypts and other softwoods and hardwoods (MPI
2021). However, the NEFD is a non-spatial database and
lacks reliability and accuracy for describing the small-
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scale plantation forests (less than 1000 ha), especially
the forests that are under 40 ha (Manley et al. 2017;
Manley et al. 2020). These limitations particularly
restrict the understanding of minor species resources
and complicate modelling the log supply.

Often, plantations of minor species are small and
fragmented with limited accessibility, which makes
it impractical to inventory the minor species through
ground measurements. Therefore, a remote sensing
approach which acquires information on resources
without physical contact offers an alternative approach
for describing forest resources. It provides opportunities
to efficiently and cost-effectively identify forest species
information, determine spatial distribution, and allow
for frequent updates (White et al. 2016). Forest species
mapping with remote sensing has been conducted
worldwide, employing a range of technologies such as
low- to high-resolution multispectral satellite imagery
(Fassnacht et al. 2016; Grabska et al. 2020), Light
Detection and Ranging data (Shi et al. 2018), unmanned
aerial vehicle (UAV) images (Schiefer et al. 2020) and
fusion of different sensors (Immitzer et al. 2018; Wang
etal. 2018).

Although very high resolution imagery would be ideal
in classifying multiple forest species, the cost and limited
coverage have hindered the potential to map small-scale
plantations across a large geographic area (Williams et
al. 2021). Free 10-m resolution imagery obtained from
the Copernicus Sentinel-2 satellite has gained popularity
in forest mapping studies worldwide due to its relatively
high spatial and spectral resolution. Alonso et al. (2020)
classified fragmented chestnut plantations in Northwest
Spain using images obtained from the Sentinel-2 satellite
and achieved 81.5% accuracy. Wan et al. (2021) fused
high-resolution aerial images with Sentinel-2 images to
segment forest stands and classified 11 tree species on a
forest farm, with classification accuracies ranging from
90% to 91.3%.

Forest species mapping can be challenging in large
areas with diverse forest compositions and diverse
environmental conditions. Several studies have
demonstrated successful classification of forest species
over larger geographic scales by incorporating temporal
variations in input image data. Punalekar et al. (2021)
applied the ExtraTree classifier to Sentinel-2 images
collected over 4.5 years to classify national-level larch
forest plantations in Wales, with all mapping accuracies
above 90% when compared against an independent
reference dataset. Hamrouni et al. (2021) proposed an
active learning-based approach to map national-level
poplar plantations in France using the Sentinel-2 time
series. Schindler et al. (2021) applied a random forest
classifier to map the national extent of southern beeches
using a temporal stack of Sentinel-2 imagery acquired
between 2016-2019 and achieved an accuracy of 87.7%.
Hos$cito and Lewandowska (2019) used the random
forest classifier to identify eight tree species in a sizable
forest in southern Poland; by merging topographic data
with multi-temporal Sentinel-2 data, they improved the
overall classification from 75.6% to 81.7%.
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Previous studies utilising Sentinel-2 imagery for
tree species classification have primarily focussed on
multiple species but within a small geographical extent
(Grabska et al. 2019; Immitzer et al. 2016; Karasiak
et al. 2017), or on classifying a single species over a
large extent (Alonso et al. 2020; Punalekar et al. 2021;
Schindler et al. 2021). In addition, species classification
studies worldwide have predominantly concentrated
on large forests, with only a limited number of studies
addressing the classification of multiple species in small-
scale forests dispersed across a broad geographic scale.
Therefore, this study aims to explore the feasibility of
classifying multiple species for small forests dispersed
over a large regional scale in New Zealand, in order to
understand the spatial distribution and area of these
minor tree species.

Specifically, the objectives of this study are to:

(1) Classify minor tree species in New Zealand’s
Hawke’s Bay Region using input features extracted from
Sentinel-2 satellite data; and

(2) Identify the important features in classifying
minor plantation species.

Methods

Study area

The study area is in the Hawke’s Bay region of New
Zealand, which is located on the east coast of New
Zealand’s North Island (39°25'S, 176°49'E). The region
covers 1.42 million hectares and consists of the Wairoa
District, Hastings District, Napier City and Central
Hawke’s Bay District (Figure 1). Forests mainly occupy
the roughest terrain on the northern and eastern side of
the region (Hawke’s Bay Regional Council 2022). There
are around 139,000 hectares of plantation forests in
Hawke’s Bay, owned by companies, investors, individual
landowners and a small amount by the Hawke’s Bay
Regional Council. Nearly 20% of the forests are less
than 100 hectares in size. The NEFD reported 3,190 ha
of minor species in the Hawke’s Bay region, comprising
445 hectares of Douglas-fir, 961 hectares of Eucalyptus
species, 368 hectares of cypress species, 917 hectares of
other softwoods and 499 ha of other hardwoods (MPI
2021). However, the spatial distribution of these minor
species and a detailed species breakdown are unknown.

Reference data collection

Ground reference data plays a crucial role in the
classification process. Ground reference data with known
location and species are required to perform species
classification. The data should be representative and
cover all relevant species and all existing age classes and
growing conditions so that the classification algorithm
can learn what a forest species ‘looks like’ spectrally and
texturally from remote sensing imagery and then classify
pixels with similar features accordingly. Therefore, the
first step of the project was to investigate the availability
of ground reference data.
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FIGURE 1: Location of the study area. Map A gives an overview of New Zealand regions. Map B shows the boundary of
Hawke’s Bay region and four territorial authorities in the region. Map C shows the location of the sample plots, including
the reference data from the Central North Island region.
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Due to lack of an official record of minor species and
the impracticality of visiting each plantation in New
Zealand, ground reference data were intended to be
collected from owners of minor species. The spatially
explicit reference data were collected from large-scale
owners in geographic information system (GIS) format,
whereas no data was collected from the small-scale
owners due to the absence of spatial records.

An email request was sent to eleven large-corporate
owners in Hawke’s Bay enquiring about the spatial
location of their minor species plantations in June
2021. All owners responded and provided locations of
1,130 hectares of minor species in the region, of which
53% (598 ha) were Eucalyptus species; Douglas-fir
(Pseudotsuga menziesii), cypress (Cupressus species),
redwood (Sequoia sempervirens (D.Don) Endl), other
pine (non-Pinus radiata), Acacia (Acacia species), larch
(Larix species); while, other minor species made up the
remaining 47% (Table 1). In addition, over one-third of
the resource was aged five years or below. That means
they are less likely to be detected from satellite imagery
compared with mature forests.

We considered the reference data received from
large-scale owners in Hawke’s Bay, imbalanced and
insufficient as we are concerned the reference data only
cover small areas and may notbe representative for these
minor species. Therefore, we requested additional data
from large-scale owners from the Central North Island
(CNI) region which is located adjacently (Figure 1). The
ground reference data from CNI and Hawke’s Bay were
combined. Within the provided GIS boundaries, 2,788
circular plots with 50 m radius were automatically and
randomly generated at least 100 metres apart from each
other. Occasionally, there are plots that extend beyond
the stand boundary, which happens in the case of very
small forest stands that are less than 50 metres in width.
In such instances, these plots were adjusted to align with
the forest stand boundaries to ensure that they cover
only one species at a time. These plots were then used
as the sample data for species classification (Map C on
Figure 1). A quick visual inspection was conducted to
the plots to ensure there were trees present so that the
reference data was valid. The sample data was randomly
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split into 70% for training and 30% for validation. A
summary of the ground reference data for each target
classification class is described in Table 2.

Sentinel imagery

The national Sentinel-2 mosaic was processed by
Manaaki Whenua - Landcare Research based on workflow
developed by Shepherd et al. (2020) and distributed by
the Ministry for the Environment (MfE), New Zealand.
The image product is a 10 m, ten-band multispectral,
cloud-minimised mosaic of multiple Sentinel-2A and
-2B satellite images over New Zealand and was acquired
from late 2019 to early 2022 (Table 3). The mosaic went
through pan-sharpening, atmospheric and bidirectional
reflectance distribution function correction, cloud
clearing and a minimising process.

The national mosaic imagery was then clipped to the
extent of the study area to only include Hawke’s Bay and
Central North Island. The latest Land Cover Database
(LCDB v5.0) (Landcare Research 2021), which is a multi-
temporal, thematic classification of New Zealand’s land
cover, was used to mask out non-plantation forest areas.

Input features

Vegetation indices (VIs), which are the spectral
transformation of two or more spectral bands, are useful
in detecting spectral response variations in foliage and
have considerable advantages in cellular structure
evaluation, stress prediction, moisture content estimate,
pigment content detection, and stress estimation
(Immitzer et al. 2019). In total, 33 vegetation indices,
which are sensitive to vegetation properties and have
been previously used in vegetation classification studies
(Immitzer et al. 2019; Ye et al. 2021), were extracted
from the Sentinel-2 mosaic.

Textural features are mainly related to the variability
of stand density, forest type (broadleaved, coniferous),
crown size, crown closure, crown form, and crown
closure (Fassnacht et al. 2016). They can considerably
enhance the classification accuracy when combined
with spectral features (Mallinis et al. 2008). For this
study, due to multiple input bands from the Sentinel-2
mosaic, a Principle Component Analysis (PCA) was

TABLE 1: Area of minor plantation species in the Hawke's Bay and Central North Island regions based on data received

from large-scale forest owners.

Species Group Scientific Name Hawke’s Bay (ha) Central North Island (ha)
Acacia Acacia species 25 65
Cypress Cupressus species 74 858
Douglas-fir Pseudotsuga menziesii 183 12,841
Eucalyptus Eucalyptus species 598 2,303
Larch Larix species 23 43
Other pine Pinus species other than radiata pine 26 267
Redwood Sequoia sempervirens 57 967
Other species Other minor species 144 482
Total (ha) 1,130 17,826
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TABLE 2: Description of training and validation data for each species class. Each pixel represents a 10 x 10 m grid.
Radiata pine samples were manually added as placeholders in the classification. ‘Other pine’ are pine species other than
radiata pine. Other species include other minor species that are not listed in the table.

Species Class No. of Training pixels

No. of Validation pixels

Total No. of Truthing pixels

Acacia 1,770
Cypress 9,264
Douglas-fir 40,432
Eucalyptus 14,376
Larch 1,465
Other pine 4,813
Poplar 1,356
Radiata pine 27,399
Redwood 4,792
Other species 6,835
Total 112,502

758 2,528
3,970 13,234
17,328 57,760
6,160 20,536
627 2,092
2,062 6,875
580 1,936
11,742 39,141
2,053 6,845
2,928 9,763
48,208 160,710

performed. The first principle band, which holds most of
the data variance, was used to extract textural features.
Textural metrics including the Grey Levels Co-Occurrence
Matrix (GLCM) of mean, variance, homogeneity, contrast,
dissimilarity, entropy, second moment and correlation
were computed at a 3 pixel x 3 pixel window size.
Phenological features were derived from analysing
the temporal variation of Enhanced Vegetation Index-2
(EVI2) using Sentinel-2 data (Level-2A product -
Surface Reflectance) collected from 1 January 2019 to
31 December 2020 in Google Earth Engine (GEE). EVI2
was chosen because it is one of the most commonly used
VIs for phenological studies, as reviewed by Caparros-
Santiago et al. (2021). It was developed by Jiang et al.
(2008) to address the saturation issue of the Normalized
Difference Vegetation Index (NDVI) in areas with high
biomass and to avoid using the blue band, which lacks
vegetation characteristic information in the calculation
(Wang et al. 2018). In addition, when comparing the
differences and consistency of the remote sensing data
(AVHRR, MODIS, VIIRS, SPOT-VGT, and SeaWiFS) for the
characterisation of tropical forest phenology, Kim et al.

(2007) discovered that EVI2 outperformed NDVI and EVI.

Harmonic (Fourier) analysis has a low sensitivity to
non-systematic noise so it was used to represent the
seasonal dynamic of the land surface and to extract
phenological information (Derwin et al. 2020; Wu et al.
2021). By linearly mixing the sine and cosine functions,
the algorithm can simulate symmetric seasonal variation
(Shumway etal. 2000). The original GEE code was created
by Clinton (2016) for time-series Landsat-8 data analysis,
and it was modified to retrieve Sentinel-2 image collection
for this study. Three seasonal metrics, amplitude (AMP),
phase (PH) and mean EVI2 of the period, were extracted.
Phase measures the length of the change’s time window,
whereas amplitude shows the size of the shift relative to
a baseline.

In addition, a Digital Elevation Model (DEM) was
retrieved from Land Information New Zealand (LINZ)
(LINZ 2020) and was re-sampled to 10 m to be consistent
with the rest of the input features. In total, 55 features
were extracted using the remote-sensing software ENVI
version 5.6 (ENVI 2021); Table 4. More details of the
vegetation indices can be found in Appendix 1.

TABLE 3: Bands specification of Sentinel-2 mosaic.

Band Band Name Short Name  Wavelength (nm)
2 Blue B 490
3 Green G 560
4 Red R 665
5 Red Edge 1 RE705 705
6 Red Edge 2 RE740 740
7 Red Edge 3 RE783 783
8 Near Infrared wide NIR842 842
8A Near Infrared narrow NIR865 865
11 Short Wave Infrared 1 SWIR1610 1610
12 Short Wave Infrared 2 SWIR2190 2190
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TABLE 4: List of 55 input features used for species classification.
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Abbreviation Name Abbreviation Name
Spectral bands Vegetation Indices
Blue Blue band LAI Leaf Area Index
Green Green band MCARLI Modified Chlorophyll Absorption
Red Red band Ratio Index - Improved
RE705 Red Edge 705 nm MNLI Modified Non-Linear Index
RE740 Red Edge 740 nm MNDWI Modified Normalised Difference
Water Index
RE783 Red Edge 783 nm . ) .
MSR Modified Simple Ratio
NIR842 Near Infrared 842 nm . ) ) )
MSAVI2 Modified Soil Adjusted Vegetation
NIR865 Near Infrared 865 nm
Index 2
SWIR1610 Short-wave infrared 1610 nm MTVLI Modified Triangular Vegetation Index
SWIR2190 Short-wave infrared 2190 nm - Improved
Textural NDVI Normalised Difference Vegetation
GLCM_Mean Local mean of Gray-Level Co- Index
Occurrence Matrix (GLCM) 0SAVI Optimized Soil Adjusted Vegetation
GLCM_Variance Local variance of GLCM Index
GLCM_Homogeneity GLCM Homogeneity RENDVI Red Edge Normalised Difference
Vegetation Index
GLCM_Contrast GLCM Contrast
—~ontras ontras REPI Red Edge Position Index
GLCM_Dissimilarity =~ GLCM Dissimilarit,
~UIssumiarty isstmiartty RGRI Red Green Ratio Index
GLCM_Ent GLCM Ent
~Hropy HHopy RDVI Renormalised Difference Vegetation
GLCM_2ndMoment  GLCM 2nd Moment Index
GLCM_Correlation GLCM Correlation SAVI Soil Adjusted Vegetation Index
Phenology NIR_R Simple Ratio NIR/red
Mean EVI2 The average Enhanced B_RE705 Simple Ratio blue/RE705
Vegetation Index 2 (EVI2
egetation Index 2 (EVIZ) B_RE740 Simple Ratio blue/RE740
EVI2 ph The ph f EVI2
phase e phaseo B_RE783 simple Ratio blue/RE783
EVI2 amplitude The amplitude of EVI2 . .
NIR_B Simple Ratio NIR/blue
T h
opograply NIR_G Simple Ratio NIR/green
DEM Resampled 10 m Digital NIR RE705 Simple Ratio NIR/RE705
Elevation Model - imple Ratio /
Vegetation Indices NIR_RE740 Simple Ratio NIR/RE740
EVI2 Enhanced Vegetation Index 2 NIR RE783 Simple Ratio NIR/RE783
GEMI Global Environmental TCARI Transformed Chlorophyll Absorption
Monitori Reflectance Index
onitoring Index
GARI Green Atmospherically Resistant I Triangular Vegetation Index
Index VARI Visible Atmospherically Resistant
Gl Green Chlorophyll Index Index
GI Greenness Index WDRVI ;N:ide Dynamic Range Vegetation
ndex
GNDVI Green Normalised Difference

Vegetation Index

Species classification

Random forest is a machine learning algorithm applied
widely in image classification because of its high
prediction accuracy and the ability to handle high-
dimensional data. The classifier is an ensemble of
independent individual decision trees, each individual

decision tree in the classifier casts a vote for the class
that should be applied to the given sample, and the class
that receives the most votes wins (Breiman 2001). The
algorithm does not require distributional assumption
and is less sensitive to the number of input variables and
overfitting (Fassnacht et al. 2016). Pelletier et al. (2016)
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compared classification algorithms and concluded
random forest is most robust in mapping land cover
over large areas by producing the highest classification
accuracy with the shortest training time, as well as
being less affected by parametrisation and number of
training samples. Therefore, pixel-based classification
with the random forest classifier was applied using
the “randomForest” package (Liaw & Wiener 2002) in
statistical package R (R Core Team 2013).

Due to high dimensional input features and target
species classes, a feature selection process using the
“VSURF” package (Genuer et al. 2015) was applied to
eliminate redundant variables and reduce computation
time for classification. Based on findings from Speiser
et al. (2019), Variable Selection Using Random Forests
(VSURF) outperformed other feature selection methods
for random forest classification. After the classification, a
majority filter (with 3 x 3 neighbours) was applied to the
classification image to minimise the occurrence of small
isolated pixels.

Accuracy assessment

The accuracy of classification was assessed using the
confusion matrix (Congalton 2001), which compares
the classified and reference species classes based on the
validation dataset. Measures such as the overall accuracy,
producer’s accuracy (PA) and user’s accuracy (UA) were
calculated for individual classes. The overall accuracy
indicates the proportion of pixels that were correctly
classified out of all the reference pixels. The PA, which
is related to omission error, reflects the probability of a
species class being correctly classified. The UA relates to
the commission error, which represents the probability
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that a pixel classified into a given species actually
represents that species on the ground.

Application of classification

The random forest classification was applied to the
forested areas in Hawke’s Bay region. The spatial extent
of the small-scale minor forests, which was manually
delineated based on LINZ 30 cm aerial photos by the
School of Forestry, University of Canterbury, New Zealand
was used to clip the classification result so that the area
summary of classified species only applies to minor
species. Furthermore, the area summary was conducted
for small-scale and large-scale plantations separately,
and the area of each species class was summarised and
compared with the NEFD record of minor species.

Results and Discussion

Spectral signature of tree species

Different land covers absorb, emit and reflect different
wavelengths of the electromagnetic spectrum. A
predictive model known as “spectral signatures” was
created using multivariate statistical algorithms using
reference data and multi-spectral satellite data for the
same sites in order to categorise the satellite image into
different types of land cover (Laborte et al. 2010).

Prior to species classification, the spectral signature
of each tree species indicating how species’ reflectance
differs between the wavelength bands, was examined
to understand the potential separability of different
species (Figure 2). The spectral signature suggests
that generally, all tree species reflect similarly within
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FIGURE 2: Spectral signature of different species.
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the visible wavelength (400-700 nm) but illustrate
the higher separation between the reflectance in the
red edge and NIR spectrum (700-1300 nm). The SWIR
spectrum (1300 -2500 nm) also indicated some level of
separation of reflectance. The spectral signature of all
species showed a preliminary possibility of separating
tree species at the RE, NIR and SWIR spectrum. The
reflectance characteristics of individual leaf components
play the main role in how radiation interacts with
vegetation. Chlorophyll, carotenoids, and anthocyanins,
which are pigments found in leaves, absorb incident light
to produce the majority of the visible spectrum’s signal.
Water absorption is the main factor in the NIR spectrum.
Water has a major role in determining the reflectance in
the SWIR region, although nitrogen and different types
of carbon also contribute significantly to the reflectance
(Asner 1998).

Classification accuracy
The species classification with all 55 input features
achieved an overall accuracy of 92.2% and kappa
coefficient of 89.0%. Twelve input features were selected
from VSURF and the classification with 12 selected
variables produced almost identical overall classification
accuracy (92.3%) and kappa coefficient (89.1%) as
using all input variables. The differences in the user’s
and producer’s accuracies for individual species were
also minimal (Table 5). However, classification using
all 55 metrics was more time-consuming. Therefore,
the classification algorithm with 12 selected variables
was chosen to be applied to the whole study area due to
similar accuracy and reduced computation time.
Douglas-fir and Eucalyptus were the two most accurately
classified species (Table 5), with PA over 90%. These two
classes also contained more reference data than other
species classes. On the other hand, acacia was the least
accurately classified class, with PA of 59.4% and UA of
88.8%. Other species with potentially more than one
species were also less accurately classified (PA of 75.0%
and UA of 89.1%). All species classes achieved high
user’s accuracies (over 85%).

There is no standard definition for the minimal
classification accuracy for classifying tree species
because it always relies on the study’s location and goals.
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However, it is generally agreed, following the suggestion
of Thomlinson et al. (1999), that the minimum accuracy
requirements were 85% overall accuracy with no
class-specific accuracy below 70% (Fassnacht et al.
2016) . The overall accuracy 92.3% well exceeded the
minimum overall accuracy, and all individual species
classes were above the minimum accuracy for individual
class except for acacia and other exotic species. The
overall classification accuracy for classifying multiple
tree species was comparable with other studies using
Sentinel-2 imagery, e.g. Bolyn et al. (2018) classified 10
tree species with an overall accuracy of 88.9%, Persson
et al. (2018) produced an overall accuracy of 88.2% for
classifying five tree species in a Swedish forest, Grabska
et al. (2019) achieved up to 92.38% overall accuracy for
classifying nine tree species.

Overall, this study successfully classified forest species
in highly fragmented forests over a large geographic
area, with a wide range of input variables including
spectral bands, vegetation indices, phenological features
and DEM, and produced satisfactory -classification
accuracies. However, it is challenging to achieve high
accuracies for certain tree species (e.g. acacia and other
species). Similarly, Immitzer et al. (2016) also observed
lower classification accuracies for those tree species
which are either uncommon in the study area or within
mixed stands.

Input features

After running VSURF variable selection process, twelve
out of 55 input variables were selected for species
classification, each contributing differently to the species
classification (Figure 3). According to the importance
score of all variables, DEM was the most useful variable
for classifying all minor species, suggesting that elevation
plays an important role in differentiating plantation
species in the study area. DEM was also found as the most
important contributor to land cover and forest species
classification in other studies (Ye et al. 2021; Zhang &
Yang 2020). Elevation influences the distribution of
minor plantation species for various reasons. Firstly,
it affects climate conditions, with varying elevations
corresponding to distinct temperature, solar radiation,
and precipitation levels to which minor species have

TABLE 5: The producer’s accuracy (PA) and user’s accuracy (UA) for each species. All features mean species classification
uses all 55 input features, while selected features mean classification uses VSURF (12) selected features. Detailed

Confusion Matrices can be found in Appendices 2 and 3.

Feature Acacia Cypress Douglas-fir Eucalyptus Larch Other Poplar Redwood Other
pine species

All features

PA 0.590 0.899 0.980 0.956 0.762 0.872 0.872 0.851 0.754
UA 0.892  0.940 0.924 0.918 0931 0936 0939 0.910 0.894
Selected features

PA 0.594 0910 0.979 0.954 0.766 0.878 0.886 0.853 0.750
UA 0.888 0.936 0.921 0.906 0909 0941 0935 0.905 0.891
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adapted (Korner 2007). Additionally, topographic
features associated with elevation can impact how
sunlight is distributed across slopes and aspects, further
shaping trees’ survival and productivity (Stage & Salas
2007).

Four original spectral bands, two RE and two SWIR
bands were also identified as useful variables, which
shows consistency of findings from the spectral signature
of species (Figure 3). RE and SWIR bands were also
identified as high-value bands for forest species mapping
(Immitzer et al. 2016) and land cover classification
(Schuster et al. 2012) in earlier studies. In tree canopies,
the amount of radiation reflected at various wavelengths
varies according to the chemical makeup of the tissue,
which includes water, light-harvesting pigments, and
structural carbohydrates (Asner 1998). The sharply
sloping portion of the vegetation reflectance curve

between 690 nm and 740 nm, which is brought on by
the change from chlorophyll absorption to near-infrared
leaf scattering, is known as the red edge. The amount
of chlorophyll in the vegetation can be estimated by
using near-infrared measurements, which have a far
deeper penetration depth through the canopy than
red bands (Sims & Gamon 2002). Visible and RE bands
are dominated by absorption from foliar pigments,
making them effective for classifying vegetation
(Hennessy et al. 2020). In this study, RE bands were
found particularly helpful in discriminating poplar, pine,
redwood and cypress species based on the importance
scores (Figure 3). SWIR bands, which are less affected
by the atmosphere, and are capable of detecting water
contents in soil and forest canopy, were found useful
in discriminating forest types, especially evergreen
coniferous forests (Murakami 2006). SWIR bands were
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found particularly useful in classifying redwood, radiata
pine, cypress and larch in this study.

Vegetation Indices (VIs) combine the surface
reflectance at two or more wavelengths to emphasise
a specific characteristic of vegetation, such as
photosynthetic activity and canopy structure. They
enhance the sensitivity of spectral properties of
vegetation while reducing spectral disturbance (Glenn et
al. 2008). VIs describe the biochemical and physiological
properties of vegetation that could contribute to the
vegetation classification. Six out of the twelve variables
were vegetation indices (GI, TCARI, B_RE705, RENDVI,
NIR_RE740 and NIR_RE705). GI, which is the ratio of the
green and red band, is a chlorophyll index which was
found empirically related to leaf chlorophyll content
(Smith et al. 1995). It is believed that measurement of
chlorophyll concentration may reveal information about
the physiological state of the plant, as well as nitrogen
levels and hence photosynthesis (le Maire et al. 2004).
In this study, GI appeared to be useful in differentiating
forest species, particularly for poplar, eucalyptus and
cypress. Similarly, another chlorophyll index TCARI,
which describes the chlorophyll’s relative abundance,
was also identified as an important feature, especially
for classifying redwood and radiata pine. It tends to be
sensitive to detecting the reflectance of the underlying
soil, especially in vegetation with a low Leaf Area Index
(LAI) (Haboudane et al. 2004). RENDVI is an adjustment
to the standard NDVI by employing bands along the red
edge to replace the primary absorption and reflectance
peaks. Ittakes advantage of how sensitive the vegetation’s
red edge is to even little variations in canopy leaf content,
gap fraction, and senescence (Gitelson & Merzlyak 1994).
RENDVI was found useful in discriminating radiata pine
and other pine species in this study.

Three simple ratios (B_RE705, NIR_RE740 and NIR_
RE705) that took the advantages of the blue, RE and
NIR bands, were found more useful in classifying poplar,
radiata and other pine species. B_RE705 ratio was found
useful in landcover classification, particularly for low
vegetations (Radoux et al. 2016). Datt (1999) found that
the NIR_RE705 ratio correlated well with the chlorophyll
content (up to Pearson-r = 0.83) of Eucalyptus species
and can be used as an indicator of growth for woody
vegetation. NIR_740 which was derived based on Datt
(1999) was also identified as an useful input feature.

One phenology feature (Mean EVI2), which is the mean
value of EVI2 over a two-year period, was also selected.
Phenology is another useful property for identifying
different tree species. Phenology includes obvious
temporal processes such as the change of leaf colour
in deciduous forests in autumn due to leaf senescence
(primarily related to the faster decomposition of
chlorophyll pigments), the bright green hues of young
leaves and needles in the spring, as well as flowering
events (Chuine & Beaubien 2001). The mean EVI2,
which allows observation of the temporal change in the
EVI2 over two growing seasons of plantation species,
is potentially useful in discriminating evergreen and
deciduous species, such as larch (Figure 3). According
to Jiang et al. (2008), EVI2 is a useful VI for tracking
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vegetation development as it can remain sensitive
to variations in thick vegetation despite not being as
sensitive to background soil reflectance as NDVI (Rocha
& Shaver 2009).

Application of results

The classification using a random forest classifier with
12 selected features was applied to the whole Hawke's
Bay region within the extent of non-plantation forest
areas and pre-defined forest boundaries. This provides a
spatial representation of all minor species in the Hawke’s
Bay region.

In Hawke’s Bay, a total of 2,151 ha of minor
species were classified in the small-scale forests. The
classification suggests that the most common minor
species for small-scale owners are Eucalyptus species,
with 671 ha mapped accounting for 31% of all small-
scale minor species (Figure 4), followed by cypress and
poplar (18% and 17% respectively). Acacia, other pine
and larch are the least planted minor species (less than
20 ha) in Hawke’s Bay region. The other species account
for 17% of all small-scale plantations (376 ha), but the
actual species distribution is unknown due to limited
reference information. When summarised together with
the data provided by the large-scale owners, the total
distribution of all minor species in Hawke’s Bay can be
obtained (Figure 4).

When comparing the area with the official NEFD
record, the total area of minor species is 3281 ha, which
is 91 ha (3%) more than the total NEFD-reported area
(Table 6). We were only able to compare three species
classes as NEFD did not summarise more detailed
species levels. At the species level, apart from Douglas-
fir, both cypress and eucalyptus were estimated to have
more area than the NEFD area. It is worth noting that
NEFD lacks spatial representation of plantation forests
and the area summary for Hawke’s Bay region may not
be accurate (Manley et al. 2020).

Limitation and opportunities

This study applied a random forest classifier to
automatically classify minor species and achieved
promising classification accuracy for most species.
Due to limited ground reference data in the study
area of Hawke’s Bay, data from a neighbouring region,
Central North Island, were also utilised to augment the
reference dataset. The classification results revealed
that a larger reference dataset corresponded to higher
accuracy in species classification. Consequently, the high
classification accuracies observed in Hawke’s Bay may
be largely attributed to the abundance of reference data
from Central North Island. In addition, it is important
to acknowledge a limitation with the assumption that
the accuracy and representativeness of the GIS data
provided by the large-scale owners apply to the small-
scale plantations.

This study classified nine minor species classes, but
in reality, understanding the distribution within each
species class is also critical. For example, there are over
700 Eucalyptus species, and many have been introduced
to New Zealand. Each species may have different
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FIGURE 4: Area summary of large-scale and small-scale minor species plantation. Large-scale species was provided by
owners while small-scale species was estimated from classification.

growth and product characteristics; hence identifying
individual species becomes critical. In order to classify
individual species, sub-metre resolution imagery (e.g.
UAV multispectral imaging) and more detailed reference
data will be required. This may require field verification
of species by either visiting the forests with a GPS or
doing drone surveys of representative minor species
plantations.

In this study, classifying species within the same
genus is not possible given the limited training data and
10 m resolution imagery. However, with more reference
data and higher resolution imagery, it might be possible
to classify individual species within the same genus
(e.g. Eucalyptus species), given that each species ‘looks’
differently from higher resolution imagery. Being able to

TABLE 6: The total area of minor species in Hawke’s
Bay compared with NEFD 2019 area (MPI 2020). The
areas estimated in this study include both large-scale
and small-scale. Other species are aggregated due to
different species class definition in NEFD.

Species Estimated in this study NEFD Area
(ha) (ha)
Douglas-fir 337 445
Cypress 462 368
Eucalypt 1,269 961
Other 1,213 1,416
Total 3,281 3,190

differentiate eucalypts at a species level would improve
the usefulness of undertaking a national inventory.

Conclusions

This study provides proof of the concept of using
remote sensing to classify minor species of the small-
scale plantation at a regional level and achieved high
classification accuracies for most species. The two
minor species that were most correctly identified were
Douglas-fir and Eucalyptus species, with over 90% of
both producer’s and user’s accuracies. It was found
that the classification accuracy of using random forest
classifier highly depends on the availability of reference
data. In total, 2151 ha of small-scale minor species were
classified for Hawke’s Bay, and a majority of them are
eucalyptus, cypress and poplar. The Digital Elevation
Model was the most significant input variable chosen for
the classification, indicating that elevation is a key factor
in separating plantation species. Greenness Index (GI)
and red edge bands are also shown to be helpful in the
classification. Mean-EVI2, a phenological feature, was
only discovered to be helpful in classifying deciduous
species like larch and poplar.

This is one of the very few studies that classified
multiple forest species in highly fragmented forests
over a large geographic extent. The spatial distribution
of minor plantation species in New Zealand was, to the
best of our knowledge, mapped for the first time at the
regional level, and the results are encouraging enough to
continue with species mapping at the national level. To
further enhance the accuracy of minor species mapping,
acquiring additional reliable reference data and
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employing higher resolution imagery could potentially
improve the identification of more detailed species.
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